搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米图案对钙钛矿电池的光学增强

韩非 江舟 王晨 周华 沈向前

引用本文:
Citation:

金属纳米图案对钙钛矿电池的光学增强

韩非, 江舟, 王晨, 周华, 沈向前

Optical enhancement of perovskite solar cells by metallic nano-patterns

Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiangqian
PDF
导出引用
  • 表面等离激元共振(SPR)是调控太阳电池光谱响应,增强能量转换效率的重要策略之一。但对于平面异质型的钙钛矿电池,由于各功能层厚度对金属纳米结构的尺寸限制,SPR的响应波段通常被束缚在很窄的可见光区域,且共振能量的消散以外层电子的热吸收为主。本文基于时域有限差分方法(FDTD)和严格耦合波分析(RCWA),系统研究了不同金属图案的SPR图谱。结果表明,通过对图案形状、厚度、周期等特征参数的优化,可以在近红外区域观察到明显的SPR现象,同时散射在消光中占据主导地位。对于最优的金属圆环,SPR峰值对应的波长为772 nm,此时的相对吸收、散射和消光截面分别为0.54、1.39和1.93,钙钛矿响应层在700-850 nm之间的加权平均吸收从53.61%提升到了65.36%。相应器件的光生电流密度从20.39 mA cm-2增加到了22.72 mA cm-2,光电转换效率相对提升了11.45%。
    The integration of metallic nanoparticles (MNPs) with plasmonic effects is an alternate approach for managing photons and charge carriers, and is considered a promising method for advancing solar cell technologies. Plasmonic-enhanced solar energy harvesting involves three mechanisms: hot-electron injection, light trapping, and modulation of energy flow direction through dipole-dipole coupling. These phenomena have been observed to significantly enhance the performance of silicon, gallium arsenide, dye-sensitized, and organic solar cells. However, for emerging perovskite solar cells, the light trapping effect, specifically, the far-field scattering via MNPs, has been seldom reported. The anomalous phenomenon is primarily attributed to the size constraints imposed on MNPs by the thickness of the functional layers in cell devices. According to the theory of localized surface plasmon resonance (SPR), the characteristic size of the MNPs needs to be larger than 90 nm to achieve optimal photon scattering. Conversely, charge transport layers like NiOx and SnO2 in perovskite solar cells are typically thin, ranging from a few to several tens of nanometers in thickness. Therefore, the community of perovskite solar cells still faces a great challenge in harvesting light through plasmonic scattering.
    Compared to MNPs, the shape, size, periodicity, and other characteristic parameters of two-dimensional metal patterns within the horizontal plane are not limited by the thickness of the device's functional layer, thus enabling a more flexible regulation of the SPR response band, vibration intensity, and dissipation method of plasmonic energy. In this study, based on the finite-difference time-domain (FDTD) method and rigorous coupled-wave analysis (RCWA), we systematically investigated the SPR spectra of different metal patterns. The results demonstrate that by optimizing characteristic parameters such as pattern shape, thickness, and periodicity, a significant SPR phenomenon can be observed in the near-infrared region, with scattering dominating over extinction. For the optimal metal ring pattern, the SPR peak corresponds to a wavelength of 772 nm, with relative absorption, scattering, and extinction cross-sections of 0.54, 1.39, and 1.93, respectively. The weighted average absorption of the perovskite response layer in the range of 700-850 nm increased from 53.61% to 65.36%. Correspondingly, the photocurrent density of the device increased from 20.39 to 22.72 mA/cm2, and the photoelectric conversion efficiency was relatively improved by 11.45%. This research provides a novel path for light trapping design in perovskite solar cells in the near-infrared region, and serves as a "spectrum-based" reference for SPR regulation in other similar devices.
  • [1]

    Huang Z, Li L, Wu T, Xue T, Sun W, Pan Q, Wang H, Xie H, Chi J, Han T, Hu X, Su M, Chen Y, Song Y 2023 Nat. Commun. 14 1204

    [2]

    Yao M L, Liao J X, Lu H F, Huang Q, Cui Y F 2024 Acta Phys. Sin. 8 88801 (in Chinese) [姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰 2024 物理学报 8 88801]

    [3]

    Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569

    [4]

    Raza H, Imran T, Gao Y, Azeem M, Younis M, Wang J, Liu S, Yang Z, Liu Z, Chen W 2024 Energ. Environ. Sci. 17 1819-1853

    [5]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Progress in Photovoltaics: Research and Applications 31 651

    [6]

    The National Renewable Energy Laboratory (NREL) 2024 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies

    [7]

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 143 (in Chinese) [崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 143]

    [8]

    Park J, Kim J, Yun H, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724

    [9]

    Chen R, Liu S, Xu X, Ren F, Zhou J, Tian X, Yang Z, Guanz X, Liu Z, Zhang S, Zhang Y, Wu Y, Han L, Qi Y, Chen W 2022 Energ. Environ. Sci. 15 2567

    [10]

    Shen X, Lin X, Peng Y, Zhang Y, Long F, Han Q, Wang Y, Han L 2024 Nano-Micro Lett. 16 201

    [11]

    Zhang S, Ye F, Wang X, Chen R, Zhang H, Zhan L, Jiang X, Li Y, Ji X, Liu S, Yu M, Yu F, Zhang Y, Wu R, Liu Z, Ning Z, Neher D, Han L, Lin Y, Tian H, Chen W, Stolterfoht M, Zhang L, Zhu W, Wu Y 2023 Science 380 404

    [12]

    Huang Y M, Wu Y Z, Xu X L, Qin F F, Zhang S H, An J K, Wang H J, Liu L 2022 Chin. Phys. B 31,128802

    [13]

    Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 330-336 (in Chinese) [赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 330]

    [14]

    Berry F, Mermet Lyaudoz R, Cuevas Davila J M, Djemmah D A, Nguyen H S, Seassal C, Fourmond E, Chevalier C, Amara M, Drouard E 2022 Adv Energy Mater. 12, 2200505

    [15]

    Moakhar S R, Gholipour S, Masudy-Panah S, Seza A, Mehdikhani A, Riahi-Noori N, Tafazoli S, Timasi N, Lim Y F, Saliba M 2020 Adv. Sci. 7 1902448

    [16]

    Li Y, Kou Z, Feng J, Sun H 2020 Nanophotonics-Berlin 9 3111

    [17]

    Yan G D, Zhang Z H, Guo H, Chen J P, Jiang Q S, Cui Q N, Shi Z L, Xu C X 2023 Chin. Phys. B 32, 067302

    [18]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205

    [19]

    Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955

    [20]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505

    [21]

    Saliba M, Zhang W, Burlakov V M, Stranks S D, Sun Y, Ball J M, Johnston M B, Goriely A, Wiesner U, Snaith H J 2015 Adv. Funct. Mater. 25 5038

    [22]

    Yuan Z, Wu Z, Bai S, Xia Z, Xu W, Song T, Wu H, Xu L, Si J, Jin Y, Sun B 2015 Adv. Energy Mater. 5 1500038

    [23]

    Cui X, Chen Y, Zhang M, Harn Y W, Qi J, Gao L, Wang Z L, Huang J, Yang Y, Lin Z 2020 Energ. Environ. Sci. 13 1743

    [24]

    Yao K, Zhong H, Liu Z, Xiong M, Leng S, Zhang J, Xu Y, Wang W, Zhou L, Huang H, Jen A K Y 2019 Acs Nano 13 5397

    [25]

    Li F, Lo T W, Deng X, Li S, Fan Y, Lin F R, Cheng Y, Zhu Z, Lei D, Jen A K Y 2022 Adv. Energy Mater. 12 2200186

    [26]

    Yao Kai, Li S, Liu Z, Ying Y, Dvořák P, Fei L, Sikola T, Huang H, Nordlander P, Jen A K Y, Lei D 2021 Light-Sci. Appl. 10 219

    [27]

    Cuce E, Cuce P M, Karakas I H, Bali T 2017 Energ. Convers. Manage. 146 205

    [28]

    Xu C Y, Hu W, Wang G, Niu L, Elseman A M, Liao L, Yao Y, Xu G, Luo L, Liu D, Zhou G, Li P, Song Q 2020 ACS Nano 14 196

  • [1] 朱晓丽, 仇鹏, 卫会云, 何荧峰, 刘恒, 田丰, 邱洪宇, 杜梦超, 彭铭曾, 郑新和. GaN基半导体在改变钙钛矿太阳能电池性能方面的理论分析. 物理学报, doi: 10.7498/aps.72.20230100
    [2] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, doi: 10.7498/aps.71.20211902
    [3] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究. 物理学报, doi: 10.7498/aps.65.237201
    [4] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, doi: 10.7498/aps.65.074207
    [5] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究. 物理学报, doi: 10.7498/aps.65.197301
    [6] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率. 物理学报, doi: 10.7498/aps.65.084704
    [7] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, doi: 10.7498/aps.63.197201
    [8] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, doi: 10.7498/aps.62.044210
    [9] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, doi: 10.7498/aps.62.128801
    [10] 李培丽, 施伟华, 黄德修, 张新亮. 半导体光放大器中垂直双抽运四波混频效应的理论研究. 物理学报, doi: 10.7498/aps.61.084209
    [11] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析. 物理学报, doi: 10.7498/aps.61.187304
    [12] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, doi: 10.7498/aps.61.037301
    [13] 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 孟立民, 王兆华, 郑君, 盛政明, 魏志义, 李英骏, 张杰. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, doi: 10.7498/aps.60.045204
    [14] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, doi: 10.7498/aps.60.054210
    [15] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, doi: 10.7498/aps.60.088801
    [16] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, doi: 10.7498/aps.58.914
    [17] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, doi: 10.7498/aps.57.5100
    [18] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, doi: 10.7498/aps.57.1714
    [19] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析. 物理学报, doi: 10.7498/aps.57.5138
    [20] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, doi: 10.7498/aps.56.1655
计量
  • 文章访问数:  143
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-03

/

返回文章
返回