搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菲涅耳聚光下半导体温差发电组件性能研究

许强强 季旭 李明 刘佳星 李海丽

引用本文:
Citation:

菲涅耳聚光下半导体温差发电组件性能研究

许强强, 季旭, 李明, 刘佳星, 李海丽

Performances of thermoelectric module under solar Fresnel concentration

Xu Qiang-Qiang, Ji Xu, Li Ming, Liu Jia-Xing, Li Hai-Li
PDF
导出引用
  • 采用菲涅耳透镜汇聚太阳辐射,提高半导体温差发电组件的热端温度,冷端利用散热片进行散热.从热流密度的角度建立了半导体温差发电片理论分析模型,实验基于稳态的条件下,忽略冷热端之间以及电臂间的空气对流和辐射,研究菲涅耳聚光下半导体温差发电组件的性能,推导出了半导体温差发电片的温度梯度dT/dx关系式,获得了输出电流、输出功率及热电转换效率的表达式.研究表明:随着电阻比率a(RL/R)的增大,半导体温差发电器件的输出电流I减小,输出功率P和转换效率he先增大后减小,且在a=1时,其输出功率和转换效率最高.随着温差比率b(T/TH2)的增大,无论a取何值,其输出功率P和转换效率he均增大.实验研究中,半导体温差发电片应偏离菲涅耳透镜焦平面一定距离以获得较好输出特性.通过温差发电片的不同串并联组件可获得相应输出电压.
    Using Fresnel concentration to collect solar irradiation, the hot-end temperature of the semiconductor thermoelectric generator is enhanced, and the cold end is cooled through a radiator in air. For studying the performance of thermoelectric module under solar Fresnel concentration, a theoretical model of thermoelectric generator under steady condition is built from the perspective of energy flux. The model neglects the convection and radiation heat transfer between the cold and hot end and between the arms, and simplifies the heat conduction only along the arm. Utilizing this model, the temperature gradient on thermoelectric generator (dT/dx), the output current (I), the output voltage (V), and the output power (P) of thermoelectric generator are derived, and the influences of the resistance ratio a(=R/RH2) and the temperature difference ratio b(=T/TH2) on generator output performance under a certain structure parameters of thermoelectric generator are discussed. The results show that with the increase of resistance ratio (a), the output current (I) decreases, however the output power (P) and the conversion efficiency (he) first increase, then decreases. When the resistance ratio a=1, the output power (P) and the conversion efficiency (he) reach their maximum values. When the resistance ratio (a) is smaller, the output power (P) increases rapidly with the increase of the resistance ratio (a). When the resistance ratio (a) is larger, the output power (P) decreases slowly with the increase of the resistance ratio (a). With the increase of temperature difference ratio (b), the output power (P) and the conversion efficiency (he) increase, no matter what the value of the resistance ratio (a) is. It verifies the sensitivity of the output power (P) to the temperature difference. Therefore, with a certain figure of merit, the appropriate adjustment of temperature difference ratio (b) may improve the output power (P) and the conversion efficiency (he). Besides, the load residence should be larger than the internal residence for keeping the high output performance. A Fresnel concentration thermoelectric module, including 6 thermoelectric generators, is employed to experimentally explore its output performances. In experiment, the energy flux density on the surface of the thermoelectric generator is not uniform as desired. The uneven hot-end temperature will degrade the conversion efficiency, and even excessive local temperature may damage the semiconductor thermoelectric generator. A deviation of the thermoelectric generator from the focal plane of Fresnel lens will help to improve the energy flux uniformity and achieve an optimized output characteristics. The required output voltage and output power can be obtained through series/parallel connection of these thermoelectric generators. With the series connection of the thermoelectric generators, the output current is increased. With the parallel connection of the thermoelectric generators, the output voltage is increased.
      通信作者: 季旭, jixu@ynnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51106134)和2014年国家级大学生创新创业训练计划(批准号:201410681005)资助的课题.
      Corresponding author: Ji Xu, jixu@ynnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51106134) and 2014 National Students' Innovation and Entrepreneurship Training Program Funded Projects, China (Grant No. 201410681005).
    [1]

    Jia H M, Li J Y, Yang M 2015 J. New Ind. 5 34

    [2]

    Cheng F Q, Hong Y J, Zhu C 2014 High Vol. Eng. 40 1599

    [3]

    Zhang X D, Du Q G, Jiang X Q 2011 Power Technol. 35 422

    [4]

    Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese)[蒋明波, 吴智雄, 周敏, 黄荣进, 李来风2010物理学报59 7314]

    [5]

    Amatya R, Ram R J 2012 J. Electron. Mater. 41 1011

    [6]

    Ren G S, Zhu Y D, Qiu X T 2010 Sci. Technol. Consul. Her. 6 22

    [7]

    Mao J N, Jiang S F, Fang Q, Lu J X, Liu D Y, Du J Y 2015 J. Zhejiang University 49 2205

    [8]

    Liu Y S, Gu M A, Yang J J, Shi Q G, Gao T, Yang J H 2010 Acta Phys. Sin. 59 7368 (in Chinese)[刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕2010物理学报59 7368]

    [9]

    Wang L S, Liang Q Y, Li L, Ding X Z, Tang L J 2015 T. Chin. Soc. Agr. Eng. 31 64

    [10]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [11]

    Li P, Cai L L, Zhai P C, Tang X, Zhang Q Z, Niino M 2010 J. Electron. Mater. 39 1522

    [12]

    Zhao Z L, Xu L Z, Yang T Q, Cui Q H 2010 Acta Energ. Solar Sin. 31 620 (in Chinese)[赵在理, 徐林志, 杨天麒, 崔清华2010太阳能学报31 620]

    [13]

    Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X W, Wang D Z, Muto A, Mcenaney K, Chiesa M, Ren Z F, Chen G 2011 Nat. Mater. 10 532

    [14]

    Wang C Y, Li Y Z, Z J 2016 J. Refrig. 37 106

    [15]

    Liang G W, Zhou J M, Huang X Z 2011 Appl. Energy 88 5193

    [16]

    Xu L Z, Li Y, Yang Z, Chen C H 2010 J. Tsinghua University 50 287 (in Chinese)[徐立珍, 李彦, 杨知, 陈昌和2010清华大学学报50 287]

    [17]

    Wei J T, Xiong L C, Wang H 2012 Energ. Procedia 17 1570

    [18]

    Rezania A, Rosendahl L A, Yin H 2014 J. Power Sources 255 151

    [19]

    He W, Su Y H, Riffat S B, Hou J X, Ji J 2011 Appl. Energy 88 5083

    [20]

    Najafi H, Woodbury K A 2013 Sol. Energy 91 152

    [21]

    Rabari R, Mahmud S, Dutta A 2015 Int. J. Heat Mass Transfer 91 190

    [22]

    Montecucco A, Siviter J, Knox A R 2014 Appl. Energy 123 47

    [23]

    Kim S 2013 Appl. Energy 102 1458

    [24]

    Hakimi I, Nikulshin Y, Wolfus S, Yeshurun Y 2016 Cryogenics 75 1

    [25]

    Ali S A, Mazumder S 2013 Int. J. Heat Mass Transfer 62 373

  • [1]

    Jia H M, Li J Y, Yang M 2015 J. New Ind. 5 34

    [2]

    Cheng F Q, Hong Y J, Zhu C 2014 High Vol. Eng. 40 1599

    [3]

    Zhang X D, Du Q G, Jiang X Q 2011 Power Technol. 35 422

    [4]

    Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese)[蒋明波, 吴智雄, 周敏, 黄荣进, 李来风2010物理学报59 7314]

    [5]

    Amatya R, Ram R J 2012 J. Electron. Mater. 41 1011

    [6]

    Ren G S, Zhu Y D, Qiu X T 2010 Sci. Technol. Consul. Her. 6 22

    [7]

    Mao J N, Jiang S F, Fang Q, Lu J X, Liu D Y, Du J Y 2015 J. Zhejiang University 49 2205

    [8]

    Liu Y S, Gu M A, Yang J J, Shi Q G, Gao T, Yang J H 2010 Acta Phys. Sin. 59 7368 (in Chinese)[刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕2010物理学报59 7368]

    [9]

    Wang L S, Liang Q Y, Li L, Ding X Z, Tang L J 2015 T. Chin. Soc. Agr. Eng. 31 64

    [10]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [11]

    Li P, Cai L L, Zhai P C, Tang X, Zhang Q Z, Niino M 2010 J. Electron. Mater. 39 1522

    [12]

    Zhao Z L, Xu L Z, Yang T Q, Cui Q H 2010 Acta Energ. Solar Sin. 31 620 (in Chinese)[赵在理, 徐林志, 杨天麒, 崔清华2010太阳能学报31 620]

    [13]

    Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X W, Wang D Z, Muto A, Mcenaney K, Chiesa M, Ren Z F, Chen G 2011 Nat. Mater. 10 532

    [14]

    Wang C Y, Li Y Z, Z J 2016 J. Refrig. 37 106

    [15]

    Liang G W, Zhou J M, Huang X Z 2011 Appl. Energy 88 5193

    [16]

    Xu L Z, Li Y, Yang Z, Chen C H 2010 J. Tsinghua University 50 287 (in Chinese)[徐立珍, 李彦, 杨知, 陈昌和2010清华大学学报50 287]

    [17]

    Wei J T, Xiong L C, Wang H 2012 Energ. Procedia 17 1570

    [18]

    Rezania A, Rosendahl L A, Yin H 2014 J. Power Sources 255 151

    [19]

    He W, Su Y H, Riffat S B, Hou J X, Ji J 2011 Appl. Energy 88 5083

    [20]

    Najafi H, Woodbury K A 2013 Sol. Energy 91 152

    [21]

    Rabari R, Mahmud S, Dutta A 2015 Int. J. Heat Mass Transfer 91 190

    [22]

    Montecucco A, Siviter J, Knox A R 2014 Appl. Energy 123 47

    [23]

    Kim S 2013 Appl. Energy 102 1458

    [24]

    Hakimi I, Nikulshin Y, Wolfus S, Yeshurun Y 2016 Cryogenics 75 1

    [25]

    Ali S A, Mazumder S 2013 Int. J. Heat Mass Transfer 62 373

  • [1] 韩非, 江舟, 王晨, 周华, 沈向前. 金属纳米图案对钙钛矿电池的光学增强. 物理学报, 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [2] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [4] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率. 物理学报, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [5] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [6] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [7] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [8] 李培丽, 施伟华, 黄德修, 张新亮. 半导体光放大器中垂直双抽运四波混频效应的理论研究. 物理学报, 2012, 61(8): 084209. doi: 10.7498/aps.61.084209
    [9] 许将明, 冷进勇, 韩凯, 周朴, 侯静. 单频光纤拉曼放大器的实验研究. 物理学报, 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [10] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析. 物理学报, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [11] 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 孟立民, 王兆华, 郑君, 盛政明, 魏志义, 李英骏, 张杰. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [12] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [13] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [14] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [16] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [17] 徐妙华, 陈黎明, 李玉同, 远晓辉, 刘运全, Kazuhisa Nakajima, Toshi Tajima, 王兆华, 魏志义, 赵 卫, 张 杰. 超短脉冲强激光与固体靶相互作用中Kα射线的实验研究. 物理学报, 2007, 56(1): 353-358. doi: 10.7498/aps.56.353
    [18] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [19] 杨 光, 陈桂英, 祁胜文, 郝召锋, 田建国, 张春平. 非均匀输入图像对基于细菌视紫红质膜的新事物滤波器输出特性的数值模拟. 物理学报, 2007, 56(12): 6954-6960. doi: 10.7498/aps.56.6954
    [20] 王屹山, 陈国夫, 于连君, 赵尚弘, 赵 卫. 高效、高峰值功率蓝光飞秒脉冲产生研究. 物理学报, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
计量
  • 文章访问数:  5796
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-19
  • 修回日期:  2016-08-29
  • 刊出日期:  2016-12-05

/

返回文章
返回