-
柔性纳米通道是在刚性纳米通道壁面处添加一层带某种电荷的聚电解质层或固定电荷层的纳米通道. 本文在低Zeta势近似下, 通过解析求解电势满足的线性化Poisson-Boltzmann方程和速度满足的Cauchy动量方程, 给出了圆柱形柔性纳米通道中电解质溶液的流向势和电动能量转换效率的解析解. 在表面Zeta势取值相同, 且管径相同(聚电解质层厚度远小于管径前提下)的情形下, 将圆柱形柔性纳米通道和刚性纳米通道中电解质溶液的流向势和电动转换效率进行了比较. 结果表明, 柔性纳米通道中的流向势和转换效率明显高于刚性通道中的流向势和转换效率. 在本文选取的参数范围内, 柔性纳米通道中的电动转换效率比刚性纳米通道中的转换效率提高1.5-3倍.Analytical investigations are performed for pressure driven flow of an electrically conducting, incompressible and viscous fluid in a polyelectrolyte-grafted nanotube by using Bessel functions. Nanofluidic tubes whose walls are covered by polyelectrolyte materials, named the fixed charge layer (FCL), are identified as soft nanotubes. The flow relies on an externally imposed pressure gradient and an induced reverse electroosmotic force produced by the streaming potential field which is spontaneously developed due to the ionic charge migration with the fluid flow. Many parametrical ranges are determined to ensure the validity of Debye-Hckel approximation. The analysis is based on the solutions of the linearized Poissson-Boltzmann equation and modified Navier-Stokes equation. To obtain the streaming potential, we use a numerical treatment to solve an integral equation governing the streaming potential. Finally, the electrokinetic energy conversion efficiency is studied. The result shows that both the streaming potential and energy conversion efficiency monotonically increase with the FCL thickness d increasing. However, they present a monotonic decrease trend with the increase of K, which is the ratio of the characteristic scale of the mobile charges to the fixed charge within the FCL. We compare the results in a soft nanotube with those in a rigid one, whose zeta potential is equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanotube. We find that the electric potential in a soft nanotube is higher than that in the corresponding rigid nanotube, which results in a larger streaming potential in the soft nanotue. Moreover, for the parameter ranges considered in this work, our results show that the electrokinetic energy conversion efficiency in a soft nanotube is 1.5-3 times higher than that in a rigid nanotube. These findings are important for investigating the streaming potential and electrokinetic energy conversion efficiency in soft nanotubes. They can be used as a kind of new method to enhance the energy conversion efficiency of the electrokinetic transport in nanotube.
-
Keywords:
- soft nanotube /
- energy conversion efficiency /
- streaming potential
[1] Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603
[2] Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001
[3] Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]
[4] Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304
[5] Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]
[6] Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 物理学报 64 174702]
[7] Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251
[8] Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601
[9] Davidson C, Xuan X 2008 J. Power Sources 179 297
[10] van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022
[11] Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003
[12] Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905
[13] Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361
[14] Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122
[15] Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443
[16] Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222
[17] Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558
[18] Chen G, Das S 2015 J. Colloid Interface Sci. 445 357
[19] Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582
[20] Ohshima H 1997 J. Colloid Interface Sci. 185 269
[21] Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638
[22] Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158
[23] Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239
[24] Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222
[25] Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105
[26] Chakraborty S, Das S 2008 Phys. Rev. E 77 037303
[27] Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]
[28] Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001
-
[1] Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603
[2] Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001
[3] Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]
[4] Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304
[5] Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]
[6] Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 物理学报 64 174702]
[7] Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251
[8] Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601
[9] Davidson C, Xuan X 2008 J. Power Sources 179 297
[10] van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022
[11] Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003
[12] Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905
[13] Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361
[14] Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122
[15] Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443
[16] Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222
[17] Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558
[18] Chen G, Das S 2015 J. Colloid Interface Sci. 445 357
[19] Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582
[20] Ohshima H 1997 J. Colloid Interface Sci. 185 269
[21] Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638
[22] Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158
[23] Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239
[24] Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222
[25] Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105
[26] Chakraborty S, Das S 2008 Phys. Rev. E 77 037303
[27] Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]
[28] Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001
计量
- 文章访问数: 5898
- PDF下载量: 225
- 被引次数: 0