-
二次谐波过程是制备高功率、宽波长范围激光的有效途径. 在二次谐波过程中, 晶体的热透镜效应是限制转换效率进一步提高的重要因素, 热透镜效应对二次谐波转换效率的影响随着基频光功率的增大而加剧. 本文理论分析了不同半整块腔型中热透镜效应对转换效率的影响关系; 实验上搭建了两种腔型进行高效外腔倍频制备532 nm激光, 测量其倍频转换效率随基频光功率的变化关系. 对于平凹型半整块腔, 在输入光功率为800 mW时, 产生747 mW的532 nm激光输出, 得到最佳的转换效率为93.4% ± 3%; 对于双凹型半整块腔, 在输入光功率为600 mW时, 产生529 mW的532 nm激光输出, 得到的最佳转换效率为88.2% ± 3%. 研究表明, 热透镜效应对双凹型半整块腔的转换效率影响相对较大, 且随着腔内损耗的增加而加剧; 相比于双凹型半整块腔, 平凹型结构可以实现更高效的倍频转换. 本文的理论及实验结果可在量子信息科学、光学频率计量以及生物医学等领域的研究中发挥重要作用.Second harmonic generation (SHG) is an effective way to generate short wavelength laser with high power. The SHG is accompanied with the absorptions of fundamental waves and harmonic waves, which converts a fraction of the two waves deposit energy into heat, causing a temperature gradient along the radial direction of the periodically poled potassium titanyl phosphate (PPKTP) crystal. The inhomogeneous temperature distribution causes thermal lensing in the crystal. The thermal lensing effect will deform the spatial mode of the SHG cavity and result in the mode-mismatching of the fundamental wave to the SHG cavity, and therefore the conversion efficiency of SHG process is reduced. Moreover, with the increase of injected fundamental wave power, the influence caused by thermal lens becomes more and more serious. In order to obtain a high-efficiency frequency conversion, it is necessary to take the measure to minimize the effect caused by thermal lensing. In this paper, we report on a high efficiency generation of green laser at 532 nm by external cavity SHG process with a semi-monolithic standing cavity. The influences of thermal lens effect on the optimal conversion efficiency in different semi-monolithic cavities are theoretically analyzed. The variations of conversion efficiency with the pump power in “plane-concave” semi-monolithic cavity based on parallel crystal and also in “concave-concave” semi-monolithic cavity based on concave crystal are quantitatively analyzed. In experiments, two types of cavity structures are built to measure the variation of frequency doubling conversion efficiency with pump power. For the “plane-concave” semi-monolithic cavity, the maximum green laser power of 747 mW is obtained and the corresponding conversion efficiency reaches 93.4%±3%, with 800 mW infrared laser injected. For the “concave-concave” semi-monolithic cavity, the maximum green laser power of 529 mW is obtained and the corresponding conversion efficiency is 88.2% ± 3%, with 600 mW infrared laser injected. The results show that the thermal lens affects the optimal conversion efficiency more seriously in “concave-concave” semi-monolithic cavity than in “plane-concave” semi-monolithic cavity. Furthermore, the influence of thermal lens effect turns higher and higher with the increase of the loss in the cavity. It is obvious that the “plane-concave” semi-monolithic cavity is more suitable for the SHG process and has many potential applications in quantum optics and cold atom physics and provides a guidance for future research on high-efficiency SHG process.
-
Keywords:
- frequency-doubling cavity /
- thermal lensing effect /
- second harmonic generation /
- conversion efficiency
[1] Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar
[2] Chen X Y, Nadiarynkh O, Plotnikov S, Campagnola P J 2012 Nat. Protoc. 7 654Google Scholar
[3] Cicchi R, Pavone F S 2017 Methods Mol. Biol. 1627 409Google Scholar
[4] Natal R A, Vassallo J, Paiva G R, Pelegati V B, Barbosa G O, Mendonca G R, Bondarik C, Derchain S F, Carvalho H F, Lima C S, Cesar C L, Sarian L O 2018 Tumor Biol. 40 1Google Scholar
[5] Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018 Light Sci. Appl. 7 17126Google Scholar
[6] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar
[7] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725Google Scholar
[8] Gao Y S, Fan Y B, Wang Y J, Yang W H, Song Q H, Xiao S M 2018 Nano Lett. 18 8054Google Scholar
[9] 张岩, 蔚娟, 杨鹏飞, 张俊香 2022 物理学报 71 044203Google Scholar
Zhang Y, Yu J, Yang P F, Zhang J X 2022 Acta Phys. Sin. 71 044203Google Scholar
[10] Sun X C, Wang Y J, Tian L, Shi S P, Zheng Y H, Peng K C 2019 Opt. Lett. 44 1789Google Scholar
[11] 张超, 冯晋霞, 李渊骥, 张宽收 2021 量子光学学报 27 8Google Scholar
Zhang C, Feng J X, Li Y J, Zhang K S 2021 J. Quantum Optics 27 8Google Scholar
[12] Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar
[13] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205Google Scholar
Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar
[14] Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar
[15] 万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar
Wan Z J, Feng J X, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar
[16] Eberle T, Handchen V, Schnabel R 2013 Opt. Express 21 11546Google Scholar
[17] 常彦红, 刘阿鹏 2019 量子光学学报 25 297Google Scholar
Chang Y H, Liu A P 2019 J. Quantum Optics 25 297Google Scholar
[18] Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar
[19] Yang J, Bao X H, Zhang H, Chen S, Peng C Z, Chen Z B, Pan J W 2009 Phys. Rev. A 80 1042321Google Scholar
[20] Mabuchi H, Polzik E S, Kimble H J 1994 J. Opt. Soc. Am. B 11 2023Google Scholar
[21] Shiv L, Sorensen J L, Polzik E S, Mizell G 1995 Opt. Lett. 20 2270Google Scholar
[22] Maslov V A, Mikhailov V A, Shaunin O P, Shcherbakov I A 1997 Quantum Electron. 27 356Google Scholar
[23] Hirohashi J, Pasiskevicius V, Wang S, Laurell F 2007 J. Appl. Phys. 101 033105Google Scholar
[24] Ghavami Sabouri S, Chaitanya Kumar S, Khorsandi A, Ebrahim-Zadeh M 2014 IEEE J. Sel. Top. Quant. Electron. 20 7500210Google Scholar
[25] Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar
[26] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar
[27] Hansson G, Karlsson H, Wang S H, Laurell F 2000 Appl. Opt. 39 5058Google Scholar
[28] Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar
[29] Wen X, Han Y S, Bai J D, He J, Wang Y H, Yang B D, Wang J M 2014 Opt. Express 22 32293Google Scholar
[30] Wang Q W, Tian L, Yao W X, Wang Y J, Zheng Y H 2019 Opt. Express 27 28534Google Scholar
[31] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉 2020 物理学报 69 044201Google Scholar
Tian L, Wang Q W, Yao W X, Li Q H, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 044201Google Scholar
[32] Meier T, Willke B, Danzmann K 2010 Opt. Lett. 35 3742Google Scholar
[33] Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55Google Scholar
[34] Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar
[35] Ast S, Nia R M, Schönbeck A, Lastzka N, Steinlechner J, Eberle T, Moritz M, Steinlechner S, Schnabel R 2011 Opt. Lett. 36 3467Google Scholar
[36] Yao W X, Wang Q W, Tian L, Li R X, Shi S P, Wang J R, Wang Y J, Zheng Y H 2021 Laser Phys. Lett. 18 015001Google Scholar
[37] Wang S, Pasiskevicius V, Laurell F 2004 J. Appl. Phys. 96 2023Google Scholar
[38] Roth M, Angert N, Tseitlin M, Alexandrovski A 2001 Opt. Mater. 16 131Google Scholar
[39] Kozlovsky W J, Nabors C D, Byer R L 1988 IEEE J. Quantum Electron. 24 913Google Scholar
[40] Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar
[41] Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar
[42] Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar
[43] 张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 25 456Google Scholar
Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Optics 25 456Google Scholar
[44] Wu L A, Kimble H J 1985 J. Opt. Soc. Am. B 2 697Google Scholar
[45] Sabaeian M, Jalil-Abadi F S, Rezaee M M, Motazedian A 2014 Opt. Express 22 25615Google Scholar
[46] Mousavi L, Sabaeian M, Nadgaran H 2013 Opt. Commun. 300 69Google Scholar
[47] Rezaee M M, Sabaeian M, Motazedian A, Jalil-Abadi F S, Askari H, Khazrk I 2015 Appl. Opt. 54 4781Google Scholar
[48] Sabaeian M, Jalil-Abadi F S, Rezaee M M, Motazedian A, Shahzadeh M 2015 Appl. Opt. 54 869Google Scholar
[49] Wang Y J, Li Z X, Zheng Y H, Su J 2017 IEEE J. Quantum Electron. 53 7000307Google Scholar
-
图 3 实验装置示意图. OI1—3为光隔离器, EOM为电光调制器,
$ \lambda {\text{/2}} $ 为半波片, PBS1—3为偏振分束器, HR为高反镜, L1—4为模式匹配透镜, LPF1和LPF2为低通滤波器, PID为比例积分微分器, HVA1和HVA2为高压放大器, Mixer1和Mixer2为混频器, DBS1和DBS2为双色分束器, PD1和PD2为光电探测器, SHG1和SHG2为倍频腔, PM1和PM2为功率测量装置Fig. 3. Schematic of experimental setup. OI1–3, optical isolator; EOM, electro-optic modulator;
$ \lambda {\text{/2}} $ , half-wave-plate; PBS1–3, polarization beam splitter; HR, high-reflection mirror; L1–4, Lens; LPF1 and LPF2, low-pass filters; PID, proportional-integral-differentiator; HVA1 and HVA2, high-voltage amplifiers; Mixer1 and Mixer2, mixer; DBS1 and DBS2, dichroic beam splitters; PD1 and PD2, photodetectors; SHG1 and SHG2, second harmonic generations; PM1 and PM2, power measurements. -
[1] Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar
[2] Chen X Y, Nadiarynkh O, Plotnikov S, Campagnola P J 2012 Nat. Protoc. 7 654Google Scholar
[3] Cicchi R, Pavone F S 2017 Methods Mol. Biol. 1627 409Google Scholar
[4] Natal R A, Vassallo J, Paiva G R, Pelegati V B, Barbosa G O, Mendonca G R, Bondarik C, Derchain S F, Carvalho H F, Lima C S, Cesar C L, Sarian L O 2018 Tumor Biol. 40 1Google Scholar
[5] Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018 Light Sci. Appl. 7 17126Google Scholar
[6] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar
[7] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725Google Scholar
[8] Gao Y S, Fan Y B, Wang Y J, Yang W H, Song Q H, Xiao S M 2018 Nano Lett. 18 8054Google Scholar
[9] 张岩, 蔚娟, 杨鹏飞, 张俊香 2022 物理学报 71 044203Google Scholar
Zhang Y, Yu J, Yang P F, Zhang J X 2022 Acta Phys. Sin. 71 044203Google Scholar
[10] Sun X C, Wang Y J, Tian L, Shi S P, Zheng Y H, Peng K C 2019 Opt. Lett. 44 1789Google Scholar
[11] 张超, 冯晋霞, 李渊骥, 张宽收 2021 量子光学学报 27 8Google Scholar
Zhang C, Feng J X, Li Y J, Zhang K S 2021 J. Quantum Optics 27 8Google Scholar
[12] Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar
[13] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205Google Scholar
Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar
[14] Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar
[15] 万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar
Wan Z J, Feng J X, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar
[16] Eberle T, Handchen V, Schnabel R 2013 Opt. Express 21 11546Google Scholar
[17] 常彦红, 刘阿鹏 2019 量子光学学报 25 297Google Scholar
Chang Y H, Liu A P 2019 J. Quantum Optics 25 297Google Scholar
[18] Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar
[19] Yang J, Bao X H, Zhang H, Chen S, Peng C Z, Chen Z B, Pan J W 2009 Phys. Rev. A 80 1042321Google Scholar
[20] Mabuchi H, Polzik E S, Kimble H J 1994 J. Opt. Soc. Am. B 11 2023Google Scholar
[21] Shiv L, Sorensen J L, Polzik E S, Mizell G 1995 Opt. Lett. 20 2270Google Scholar
[22] Maslov V A, Mikhailov V A, Shaunin O P, Shcherbakov I A 1997 Quantum Electron. 27 356Google Scholar
[23] Hirohashi J, Pasiskevicius V, Wang S, Laurell F 2007 J. Appl. Phys. 101 033105Google Scholar
[24] Ghavami Sabouri S, Chaitanya Kumar S, Khorsandi A, Ebrahim-Zadeh M 2014 IEEE J. Sel. Top. Quant. Electron. 20 7500210Google Scholar
[25] Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar
[26] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar
[27] Hansson G, Karlsson H, Wang S H, Laurell F 2000 Appl. Opt. 39 5058Google Scholar
[28] Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar
[29] Wen X, Han Y S, Bai J D, He J, Wang Y H, Yang B D, Wang J M 2014 Opt. Express 22 32293Google Scholar
[30] Wang Q W, Tian L, Yao W X, Wang Y J, Zheng Y H 2019 Opt. Express 27 28534Google Scholar
[31] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉 2020 物理学报 69 044201Google Scholar
Tian L, Wang Q W, Yao W X, Li Q H, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 044201Google Scholar
[32] Meier T, Willke B, Danzmann K 2010 Opt. Lett. 35 3742Google Scholar
[33] Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55Google Scholar
[34] Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar
[35] Ast S, Nia R M, Schönbeck A, Lastzka N, Steinlechner J, Eberle T, Moritz M, Steinlechner S, Schnabel R 2011 Opt. Lett. 36 3467Google Scholar
[36] Yao W X, Wang Q W, Tian L, Li R X, Shi S P, Wang J R, Wang Y J, Zheng Y H 2021 Laser Phys. Lett. 18 015001Google Scholar
[37] Wang S, Pasiskevicius V, Laurell F 2004 J. Appl. Phys. 96 2023Google Scholar
[38] Roth M, Angert N, Tseitlin M, Alexandrovski A 2001 Opt. Mater. 16 131Google Scholar
[39] Kozlovsky W J, Nabors C D, Byer R L 1988 IEEE J. Quantum Electron. 24 913Google Scholar
[40] Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar
[41] Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar
[42] Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar
[43] 张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 25 456Google Scholar
Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Optics 25 456Google Scholar
[44] Wu L A, Kimble H J 1985 J. Opt. Soc. Am. B 2 697Google Scholar
[45] Sabaeian M, Jalil-Abadi F S, Rezaee M M, Motazedian A 2014 Opt. Express 22 25615Google Scholar
[46] Mousavi L, Sabaeian M, Nadgaran H 2013 Opt. Commun. 300 69Google Scholar
[47] Rezaee M M, Sabaeian M, Motazedian A, Jalil-Abadi F S, Askari H, Khazrk I 2015 Appl. Opt. 54 4781Google Scholar
[48] Sabaeian M, Jalil-Abadi F S, Rezaee M M, Motazedian A, Shahzadeh M 2015 Appl. Opt. 54 869Google Scholar
[49] Wang Y J, Li Z X, Zheng Y H, Su J 2017 IEEE J. Quantum Electron. 53 7000307Google Scholar
计量
- 文章访问数: 4385
- PDF下载量: 84
- 被引次数: 0