搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热透镜效应对半整块腔型中二次谐波过程的影响

张晓莉 王庆伟 姚文秀 史少平 郑立昂 田龙 王雅君 陈力荣 李卫 郑耀辉

引用本文:
Citation:

热透镜效应对半整块腔型中二次谐波过程的影响

张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉

The effect of thermal lens effect on second harmonic process in semi-monolithic cavity scheme

Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui
PDF
导出引用
  • 二次谐波过程是制备高功率、宽波长范围激光的有效途径。在二次谐波过程中,晶体的热透镜效应是限制转换效率进一步提高的重要因素,热透镜效应对二次谐波转换效率的影响随着基频光功率的增加而加剧。本文理论分析了不同半整块腔型中热透镜效应对转换效率的影响关系;实验上搭建了两种腔型进行高效外腔倍频制备532 nm激光,测量其倍频转换效率随基频光功率的变化关系。对于平凹型半整块腔,在输入光功率为800 mW时,产生747 mW的532 nm激光输出,得到最佳的转换效率为(93.4±3)%;对于双凹型半整块腔,在输入光功率为600 mW时,产生529 mW的532 nm激光输出,得到的最佳转换效率为(88.2±3)%。研究表明,热透镜效应对双凹型半整块腔的转换效率影响相对较大,且随着腔内损耗的增加而加剧;相比于双凹型半整块腔,平凹型结构可以实现更高效的倍频转换。本文的理论及实验结果可在量子信息科学、光学频率计量以及生物医学等领域的研究中发挥重要作用。
    Second harmonic generation (SHG) is an effective way to generate short wavelength laser with high power. SHG is accompanied by absorptions of fundamental waves and harmonic waves, which make a fraction of the two waves deposit energy as heat and cause a temperature gradient along the radial direction of the periodically poled potassium titanyl phosphate (PPKTP) crystal. The inhomogeneous temperature distribution causes thermal lensing in the crystal. The thermal lensing effect will deform the spatial mode of the SHG cavity and result in the mode-mismatching of the fundamental wave to the SHG cavity, and the conversion efficiency of SHG process is so reduced. Moreover, with the increase of injected fundamental wave power, the influence caused by thermal lens becomes more and more serious. In order to obtain a high-efficiency frequency conversion, it is necessary to take measures to minimize the effect caused by thermal lensing. In this paper, we report on a high efficiency generation of green laser at 532 nm by external cavity SHG process with a semi-monolithic standing cavity. The influence of thermal lens effect on the optimal conversion efficiency in different semi-monolithic cavities was theoretically analyzed. The variation of conversion efficiency with the pump power in "plane-concave" semi-monolithic cavity based on parallel crystal and "concave-concave" semi-monolithic cavity based on concave crystal was quantitatively analyzed. In experiments, two types of cavity structures were built to measure the variation of frequency doubling conversion efficiency with pump power. For the "plane-concave" semi-monolithic cavity, the maximum green laser power of 747 mW was obtained and the corresponding conversion efficiency reaches (93.43)%, with injecting of 800 mW infrared laser. For the "concave-concave" semi-monolithic cavity, the maximum green laser power of 529 mW was obtained and the corresponding conversion efficiency is (88.23)%, with injecting of 600 mW infrared laser. The results show that the thermal lens impacts on the optimal conversion efficiency more serious in "concave-concave" semi-monolithic cavity in comparing with "plane-concave" semi-monolithic cavity. What's more, the influence of thermal lens effect gets higher and higher with the increase of the loss in the cavity. It is obviously that the "plane-concave" semi-monolithic cavity is more suitable for the SHG process and has huge potential in quantum optics and cold atom physics and provides a guide for future research on high-efficiency SHG process.
  • [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961Phys. Rev. Lett. 7 118

    [2]

    Chen X, Nadiarynkh O, Plotnikov S, Campagnola P J 2012Nat. Protoc. 7 654

    [3]

    Cicchi R, Pavone F S 2017Methods Mol. Biol. 1627 409

    [4]

    Natal R A, Vassallo J, Paiva G R, Pelegati V B, Barbosa G O, Mendonca G R, Bondarik C, Derchain S F, Carvalho H F, Lima C S, Cesar C L, Sarian L O 2018Tumor Biol. 40 1

    [5]

    Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018Light Sci. Appl. 7 1

    [6]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012Opt. Lett. 37 3891

    [7]

    Clarke J T, Gerard J C, Grodent D, Wannawichian S, Gustin J, Connerney J, Crary F, Dougherty M, Kurth W, Cowley S W, Bunce E J, Hill T, Kim J 2005Nature 433 725

    [8]

    Gao Y, Fan Y, Wang Y, Yang W, Song Q, Xiao S 2018Nano Lett. 18 8054

    [9]

    Sun X C, Wang Y J, Tian L, Shi S P, Zheng Y H, Peng K C 2019Opt. Lett. 44 1789

    [10]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019Chin. Opt. Lett. 17 1

    [11]

    Ast S, Ast M, Mehmet M, R S 2016Opt. Lett. 41 5094

    [12]

    Eberle T, Handchen V, Schnabel R 2013Opt. Express 21 11546

    [13]

    Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008Phys. Rev. Lett. 101 190501

    [14]

    Yang J, Bao X H, Zhang H, Chen S, Peng C Z, Chen Z B, Pan J W 2009Phys. Rev. A 80 1

    [15]

    Mabuchi H, Polzik E S, Kimble H J 1994J. Opt. Soc. Am. B 11 2023

    [16]

    Shiv L, Sorensen J L, Polzik E S 1995Opt. Lett. 20 2270

    [17]

    Maslov V A, Mikhailov V A, Shaunin O P, Shcherbakov I A 1997Quantum Electron. 27 356

    [18]

    Hirohashi J, Pasiskevicius V, Wang S, Laurell F 2007J. Appl. Phys. 101 1

    [19]

    Ghavami Sabouri S, Chaitanya Kumar S, Khorsandi A, Ebrahim-Zadeh M 2014IEEE J. Sel. Top. Quant. Electron. 20 7500210

    [20]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015Opt. Express 23 19624

    [21]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990Appl. Phys. Lett. 56 1831

    [22]

    Hansson G, Karlsson H, Wang S H, Laurell F 2000Appl. Opt. 39 5058

    [23]

    Le Targat R, Zondy J J, Lemonde P 2005Opt. Commun. 247 471

    [24]

    Wen X, Han Y S, Bai J D, He J, Wang Y H, Yang B D, Wang J M 2014Opt. Express 22 32293

    [25]

    Wang Q W, Tian L, Yao W X, Wang Y J, Zheng Y H 2019Opt. Express 27 28534

    [26]

    Meier T, Willke B, Danzmann K 2010Opt. Lett. 35 3742

    [27]

    Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017Appl. Opt. 56 55

    [28]

    Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018Opt. Lett. 43 1666

    [29]

    Ast S, Nia R M, Schönbeck A, Lastzka N, Steinlechner J, Eberle T, Moritz M, Steinlechner S, Schnabel R 2011Opt. Lett. 36 3467

    [30]

    Yao W X, Wang Q W, Tian L, Li R X, Shi S P, Wang J R, Wang Y J, Zheng Y H 2021Laser Phys. Lett. 18 1

    [31]

    Wang S, Pasiskevicius V, Laurell F 2004J. Appl. Phys. 96 2023

    [32]

    Roth M, Angert N, Tseitlin M, Alexandrovski A 2001Opt. Mater. 16 131

    [33]

    Kozlovsky W J, Nabors C D, Byer R L 1988IEEE J. Quantum Electron. 24 913

    [34]

    Hannig S, Mielke J, Fenske J A, Misera M, Beev N, Ospelkaus C, Schmidt P O 2018J. Appl. Phys. 89 3597

    [35]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016Opt. Lett. 41 3331

    [36]

    Chen C Y, Shi S P, Zheng Y H 2017Rev. Sci. Instrum. 88 103101

    [37]

    Wu L A, Kimble H J 1985J. Opt. Soc. Am. B 2 697

    [38]

    Sabaeian M, Jalil-Abadi F S, Rezaee M M, Motazedian A 2014Opt. Express 22 25615

    [39]

    Mousavi L, Sabaeian M, Nadgaran H 2013Opt. Commun. 300 69

    [40]

    Rezaee M M, Sabaeian M, Motazedian A, Jalil-Abadi F S, Askari H, Khazrk I 2015Appl. Opt. 54 4781

    [41]

    Sabaeian M, Jalil-Abadi F S, Rezaee M M, Motazedian A, Shahzadeh M 2015Appl. Opt. 54 869

    [42]

    Wang Y J, Li Z X, Zheng Y H, Su J 2017IEEE J. Quantum Electron. 53 1

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, doi: 10.7498/aps.71.20211596
    [2] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, doi: 10.7498/aps.70.20201424
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, doi: 10.7498/aps.70.20211596
    [4] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, doi: 10.7498/aps.69.20191294
    [5] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, doi: 10.7498/aps.69.20200452
    [6] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉. 高效外腔倍频产生426 nm激光的实验研究. 物理学报, doi: 10.7498/aps.69.20191417
    [7] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计. 物理学报, doi: 10.7498/aps.69.20191222
    [8] 马明宇, 吴晗, 陈卓. 金属开口环谐振器超构分子中二次谐波偏振态的调控. 物理学报, doi: 10.7498/aps.68.20190837
    [9] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器. 物理学报, doi: 10.7498/aps.65.244201
    [10] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, doi: 10.7498/aps.65.074207
    [11] 李培丽, 施伟华, 黄德修, 张新亮. 半导体光放大器中垂直双抽运四波混频效应的理论研究. 物理学报, doi: 10.7498/aps.61.084209
    [12] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, doi: 10.7498/aps.60.088801
    [13] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, doi: 10.7498/aps.60.124302
    [14] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, doi: 10.7498/aps.60.054210
    [15] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, doi: 10.7498/aps.58.914
    [16] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, doi: 10.7498/aps.56.4515
    [17] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, doi: 10.7498/aps.56.6398
    [18] 薛洪惠, 刘晓宙, 龚秀芬, 章 东. 聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究. 物理学报, doi: 10.7498/aps.54.5233
    [19] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, doi: 10.7498/aps.54.3675
    [20] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, doi: 10.7498/aps.52.372
计量
  • 文章访问数:  179
  • PDF下载量:  10
  • 被引次数: 0
出版历程

热透镜效应对半整块腔型中二次谐波过程的影响

  • 1) (山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006)
  • 2) (山西大学, 极端光学协同创新中心, 太原 030006)

摘要: 二次谐波过程是制备高功率、宽波长范围激光的有效途径。在二次谐波过程中,晶体的热透镜效应是限制转换效率进一步提高的重要因素,热透镜效应对二次谐波转换效率的影响随着基频光功率的增加而加剧。本文理论分析了不同半整块腔型中热透镜效应对转换效率的影响关系;实验上搭建了两种腔型进行高效外腔倍频制备532 nm激光,测量其倍频转换效率随基频光功率的变化关系。对于平凹型半整块腔,在输入光功率为800 mW时,产生747 mW的532 nm激光输出,得到最佳的转换效率为(93.4±3)%;对于双凹型半整块腔,在输入光功率为600 mW时,产生529 mW的532 nm激光输出,得到的最佳转换效率为(88.2±3)%。研究表明,热透镜效应对双凹型半整块腔的转换效率影响相对较大,且随着腔内损耗的增加而加剧;相比于双凹型半整块腔,平凹型结构可以实现更高效的倍频转换。本文的理论及实验结果可在量子信息科学、光学频率计量以及生物医学等领域的研究中发挥重要作用。

English Abstract

目录

    /

    返回文章
    返回