搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双共焦波导结构二次谐波太赫兹回旋管谐振腔设计

关晓通 傅文杰 鲁钝 杨同斌 鄢扬 袁学松

引用本文:
Citation:

双共焦波导结构二次谐波太赫兹回旋管谐振腔设计

关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松

Design of second harmonic terahertz gyrotron cavity based on double confocal waveguide

Guan Xiao-Tong, Fu Wen-Jie, Lu Dun, Yang Tong-Bin, Yan Yang, Yuan Xue-Song
PDF
HTML
导出引用
  • 准光共焦波导具有功率容量大、模式密度低的特点, 能够有效地减少模式竞争对回旋管互作用的影响, 有利于高次谐波太赫兹回旋管的设计. 为提高太赫兹准光回旋管的互作用效率, 在共焦柱面波导的基础上, 研究了一种新型高频互作用结构—双共焦波导结构, 设计了一种330 GHz二次谐波双共焦结构回旋管谐振腔并对其进行了理论分析和粒子模拟. 研究结果表明, 双共焦谐振腔中的高阶模式能够与高次电子回旋谐波发生稳定的相互作用, 并且没有模式竞争现象, 具备工作在太赫兹波段的潜力. 相比普通共焦波导谐振腔, 双共焦谐振腔能够增强准光回旋管的注波互作用强度, 提高回旋管的输出功率和工作效率. 此外, 结果还表明双共焦波导中的电磁波模式是一种由两个独立的共焦波导模式叠加而成的混合模式. 利用这种混合模式有望实现太赫兹回旋管的单注双频工作, 为新型太赫兹辐射源的研究提供了新的途径.
    Quasi-optical confocal cylindrical waveguide possesses a lot of good characteristics, such as big power capacity and low mode density, which can suppress the mode competition in beam-wave interaction. So quasi-optical waveguide has a great advantage in designing high harmonic terahertz gyrotrons. For the reason that part of electron beams located in a region of weak field intensity play a limited role in beam-wave interactions, the beam-wave interaction is not efficient in confocal cavity. Motivated by enhancing the beam-wave interaction efficiency of quasi-optical gyrotron, we propose a novel terahertz harmonic gyrotron cavity with double confocal waveguide in this paper. The transverse field distribution and the mode spectrum in double confocal waveguide are analyzed and presented. A 330 GHz second harmonic gyrotron with double confocal cavity is designed, theoretically analyzed and simulated by using a particle-in-cell (PIC) code. The results obtained for double confocal cavity are compared with the results for single confocal cavity, and the physical mechanism of beam-wave interaction enhancement in double confocal cavity is discussed. Theoretical results show that the double confocal cavity is able to increase the coupling strength of beam-wave interaction, thus, to improve the output power and the interaction efficiency of quasi-optical gyrotron. The PIC simulation results suggest that a high-order waveguide mode in double confocal cavity can steadily interact with the high harmonic cyclotron mode of electron beam without mode competition. Driven by a 40 kV, 2 A electron beam with a guiding center radius of 1.65 mm and velocity ratio equal to 1.5, output power of 9.9 kW at 328.93 GHz can be generated in the designed double confocal cavity. The beam-wave interaction efficiency increases from 5.3% in single confocal cavity to 12.4% in dual confocal cavity under the same operation parameters. The double confocal cavity has great potential applications in terahertz band. Moreover, this study indicates that the eigen mode in double confocal waveguide is a kind of hybrid mode superimposed by two independent single confocal waveguide modes. This mode characteristic will be beneficial to designing a multifrequency gyrotron oscillator operated in two modes and two cyclotron harmonics, simultaneously, with a single electron beam used, which provides a new possibility to develop the novel terahertz radiation source.
      通信作者: 傅文杰, fuwenjie@uestc.edu.cn
    • 基金项目: 国家级-国家自然科学基金项目(61771096)
      Corresponding author: Fu Wen-Jie, fuwenjie@uestc.edu.cn
    [1]

    Chu K R 2004 Rev. Mod. Phys. 76 489Google Scholar

    [2]

    Thumm M 2018 State-of-the-art of High Power Gyro-devices and Free Electron Masers. Update 2017 (KIT Scientific Reports 7750) (Karlsruhe: Wissenschaftliche Berichte FZKA) pp1−183

    [3]

    Thumm M, Denisov G G, Sakamoto K, Tran M Q 2019 Nucl. Fusion 59 073001Google Scholar

    [4]

    Nusinovich G S, Thumm M, Petelin M I 2014 J. Infrared Millimeter Terahertz Waves 35 325Google Scholar

    [5]

    Kariya T, Minami R, Okada M, et al. 2019 Nucl. Fusion 59 066009Google Scholar

    [6]

    Fu W J, Guan X T, Chen C, Li X Y, Yuan X S, Yan Y 2014 IEEE Trans. Electron Dev. 61 2531Google Scholar

    [7]

    Idehara T, Sabchevski S P 2017 J. Infrared Millimeter Terahertz Waves 38 62Google Scholar

    [8]

    Tsvetkov A I, Fokin A P, Sedov A S 2019 J. Infrared Millimeter Terahertz Waves 40 696Google Scholar

    [9]

    Kumar N, Singh U, Bera A, Sinha A K 2016 Infrared Phys. Technol. 76 38Google Scholar

    [10]

    袁学松, 鄢扬, 傅文杰, 刘頔威 2012 红外与毫米波学报 31 342Google Scholar

    Yuan X S, Yan Y, Fu W J, Liu D W 2012 J. Infrared Millim. Waves 31 342Google Scholar

    [11]

    黄丽萍, 洪斌斌, 刘畅, 唐昌建 2014 物理学报 63 118401Google Scholar

    Huang L P, Hong B B, Liu C, Tang C J 2014 Acta Phys. Sin. 63 118401Google Scholar

    [12]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258302Google Scholar

    [13]

    Ginzburg N S, Zotova I V, Sergeev A S, Zaslavsky V Y, Zheleznov I V 2012 Phys. Rev. Lett. 108 105101Google Scholar

    [14]

    Nanni E A, Lewis S M, Shapiro M A, Griffin R G, Temkin R J 2013 Phys. Rev. Lett. 111 235101Google Scholar

    [15]

    Hu W, Shapiro M, Kriescher K E, Temkin R J 1998 IEEE Trans. Plasma Sci. 26 366Google Scholar

    [16]

    Joye C D, Shapiro M, Sirigiri J R, Temkin R J 2009 IEEE Trans. Electron Dev. 56 818Google Scholar

    [17]

    Guan X T, Fu W J, Yan Y 2017 J. Infrared Millimeter Terahertz Waves 38 1457Google Scholar

    [18]

    Yao Y L, Wang J X, Li H, Tian Q Z, Dong K, Fu H, Lou Y 2017 IEEE Trans. Electron Dev. 64 1781Google Scholar

    [19]

    Soane A V, Shapiro M A, Jawla S, Temkin R J 2017 IEEE Trans. Plasma Sci. 45 2835Google Scholar

    [20]

    Fu W J, Guan X T, Yan Y 2019 Phys. Plasmas 26 043109Google Scholar

    [21]

    Yao Y L, Wang J X, Liu G, Li H, Dong K, Zhang B, Luo Y 2018 IEEE Electron Device Lett. 39 436Google Scholar

    [22]

    Fu W J, Guan X T, Yan Y 2016 Phys. Plasmas 23 013301Google Scholar

    [23]

    Guan X T, Fu W J, Lu D, Yang T B, Yan Y 2018 IEEE International Vacuum Electronics Conference (IVEC) Monterey, USA, April 24−26, 2018, pp1,2

    [24]

    Nusinovich G S 2018 Phys. Plasmas 25 073104Google Scholar

    [25]

    关晓通 2018 博士学位论文 (成都: 电子科技大学)

    Guan X T 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [26]

    Liu S G, Zhang Y X, Yin Y 2011 J. Phys. D Appl. Phys. 44 375105Google Scholar

    [27]

    Luchinin A G, Nusinovich G S 1984 Int. J. Electron. 57 827Google Scholar

    [28]

    Nusinovich G S 2019 Phys. Plasmas 26 053107Google Scholar

    [29]

    韩煜, 袁学松, 马春燕, 鄢扬 2012 物理学报 61 064102Google Scholar

    Han Y, Yuan X S, Ma C Y, Yan Y 2012 Acta Phys. Sin. 61 064102Google Scholar

    [30]

    Zhou J, Liu D G, Liao C, Li Z H 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar

  • 图 1  椭圆坐标系中的准光波导 (a)普通共焦波导; (b)双共焦波导

    Fig. 1.  Cross section of quasi-optical waveguides in elliptic coordinate system: (a) Normal confocal waveguide; (b) double confocal waveguide.

    图 2  两种波导中TE0, 11模的横向电场及环形电子注分布图 (a)普通共焦波导; (b)双共焦波导

    Fig. 2.  Transverse geometry with the annular electron beam and electric field distributions of TE0, 11 mode in two types of quasi-optical waveguides: (a) Normal confocal waveguide; (b) double confocal waveguide.

    图 3  双共焦波导模式特征值分布

    Fig. 3.  Mode spectrum in double confocal waveguide.

    图 4  双共焦谐振腔 (a)结构示意图; (b) TE0,11,1模冷腔纵向场分布图

    Fig. 4.  Double confocal cavity: (a) Structural diagram; (b) axial field profile of TE0,11,1 mode.

    图 5  双共焦波导中各模式对应注波耦合系数$ \big\langle {{{| {{L_{\rm{s}}}} |}^2}} \big\rangle $随电子注引导中心半径Rb的变化

    Fig. 5.  Beam-wave coupling factors $ \big\langle {{{| {{L_{\rm{s}}}} |}^2}} \big\rangle $ as functions of electron beam radius Rb for different modes in double confocal waveguides.

    图 6  普通共焦波导和双共焦波导中TE0,11模注波耦合系数计算结果 (a) 耦合系数$ \big\langle {{{| {{L_{\rm{s}}}} |}^2}} \big\rangle $沿径向的变化; (b) Rb = 1.65 mm时耦合系数|Ls|沿角向的变化

    Fig. 6.  Beam-wave coupling factors for TE0,11 mode in single and double confocal waveguide: (a) Radial distribution of coupling factor $ \big\langle {{{| {{L_{\rm{s}}}} |}^2}} \big\rangle $; (b) azimuthal distribution of coupling factor Ls for an annular electron beam with Rb = 1.65 mm.

    图 7  起振电流Ist的计算结果(V0 = 40 kV, α = 1.5, Rb = 1.65 mm) (a) 双共焦腔中各模式对应的Ist; (b) ${\rm{TE}}_{0, 11}^2$模式在双共焦腔和普通共焦腔中的Ist

    Fig. 7.  Calculated results of starting current Ist (V0 = 40 kV, α = 1.5, Rb = 1.65 mm): (a) For different modes in double confocal cavity; (b) for ${\rm{TE}}_{0, 11}^2$ mode in double and single confocal cavity.

    图 8  双共焦腔输出端口电场分量ExEy的仿真结果 (a) 时间变化图; (b) 频谱图

    Fig. 8.  Simulation results of output field Ex and Ey for double confocal cavity: (a) Time variation; (b) spectrum.

    图 9  双共焦腔Ex分量的场分布仿真结果 (a) 输出端口; (b) xz (y = 0)平面; (c) yz (x = 0)平面

    Fig. 9.  Simulation results of the distribution of electronic field Ex in double confocal cavity: (a) At output port; (b) at the xz plane (y = 0); (c) at the yz plane (x = 0).

    图 10  双共焦腔Ey分量的场分布仿真结果 (a) 输出端口; (b) xz (y = 0)平面; (c) yz (x = 0)平面

    Fig. 10.  Simulation results of the distribution of electronic field Ey in double confocal cavity: (a) At output port; (b) at the xz plane (y = 0); (c) at the yz plane (x = 0).

    图 11  普通共焦腔仿真结果 (a) 输出端口电场ExEy的时间变化图; (b) Ex的输出频谱图

    Fig. 11.  Simulation results for single confocal cavity: (a) Time variation of the output field Ex and Ey; (b) spectrum of the output field Ex.

    图 12  双共焦腔和普通共焦腔输出功率随磁场的变化

    Fig. 12.  Simulation results of output power for double confocal cavity and single confocal cavity.

    图 13  输出稳定时(100 ns)双共焦腔输出端口电场ExEy随时间的变化展开图

    Fig. 13.  Expanded results of the output field Ex and Ey for double confocal cavity around 100 ns.

    表 1  双共焦波导谐振腔的设计参数

    Table 1.  Design parameters of the proposed double confocal cavity.

    截止端镜面半径Rc1/mm直段镜面半径Rc2 /mm输出端镜面半径Rc3 /mm截止段长度L1 /mm直段长度L2 /mm输出段长度L3 /mm镜面宽度2a /mm
    4.485.105.60917103.6
    下载: 导出CSV
  • [1]

    Chu K R 2004 Rev. Mod. Phys. 76 489Google Scholar

    [2]

    Thumm M 2018 State-of-the-art of High Power Gyro-devices and Free Electron Masers. Update 2017 (KIT Scientific Reports 7750) (Karlsruhe: Wissenschaftliche Berichte FZKA) pp1−183

    [3]

    Thumm M, Denisov G G, Sakamoto K, Tran M Q 2019 Nucl. Fusion 59 073001Google Scholar

    [4]

    Nusinovich G S, Thumm M, Petelin M I 2014 J. Infrared Millimeter Terahertz Waves 35 325Google Scholar

    [5]

    Kariya T, Minami R, Okada M, et al. 2019 Nucl. Fusion 59 066009Google Scholar

    [6]

    Fu W J, Guan X T, Chen C, Li X Y, Yuan X S, Yan Y 2014 IEEE Trans. Electron Dev. 61 2531Google Scholar

    [7]

    Idehara T, Sabchevski S P 2017 J. Infrared Millimeter Terahertz Waves 38 62Google Scholar

    [8]

    Tsvetkov A I, Fokin A P, Sedov A S 2019 J. Infrared Millimeter Terahertz Waves 40 696Google Scholar

    [9]

    Kumar N, Singh U, Bera A, Sinha A K 2016 Infrared Phys. Technol. 76 38Google Scholar

    [10]

    袁学松, 鄢扬, 傅文杰, 刘頔威 2012 红外与毫米波学报 31 342Google Scholar

    Yuan X S, Yan Y, Fu W J, Liu D W 2012 J. Infrared Millim. Waves 31 342Google Scholar

    [11]

    黄丽萍, 洪斌斌, 刘畅, 唐昌建 2014 物理学报 63 118401Google Scholar

    Huang L P, Hong B B, Liu C, Tang C J 2014 Acta Phys. Sin. 63 118401Google Scholar

    [12]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258302Google Scholar

    [13]

    Ginzburg N S, Zotova I V, Sergeev A S, Zaslavsky V Y, Zheleznov I V 2012 Phys. Rev. Lett. 108 105101Google Scholar

    [14]

    Nanni E A, Lewis S M, Shapiro M A, Griffin R G, Temkin R J 2013 Phys. Rev. Lett. 111 235101Google Scholar

    [15]

    Hu W, Shapiro M, Kriescher K E, Temkin R J 1998 IEEE Trans. Plasma Sci. 26 366Google Scholar

    [16]

    Joye C D, Shapiro M, Sirigiri J R, Temkin R J 2009 IEEE Trans. Electron Dev. 56 818Google Scholar

    [17]

    Guan X T, Fu W J, Yan Y 2017 J. Infrared Millimeter Terahertz Waves 38 1457Google Scholar

    [18]

    Yao Y L, Wang J X, Li H, Tian Q Z, Dong K, Fu H, Lou Y 2017 IEEE Trans. Electron Dev. 64 1781Google Scholar

    [19]

    Soane A V, Shapiro M A, Jawla S, Temkin R J 2017 IEEE Trans. Plasma Sci. 45 2835Google Scholar

    [20]

    Fu W J, Guan X T, Yan Y 2019 Phys. Plasmas 26 043109Google Scholar

    [21]

    Yao Y L, Wang J X, Liu G, Li H, Dong K, Zhang B, Luo Y 2018 IEEE Electron Device Lett. 39 436Google Scholar

    [22]

    Fu W J, Guan X T, Yan Y 2016 Phys. Plasmas 23 013301Google Scholar

    [23]

    Guan X T, Fu W J, Lu D, Yang T B, Yan Y 2018 IEEE International Vacuum Electronics Conference (IVEC) Monterey, USA, April 24−26, 2018, pp1,2

    [24]

    Nusinovich G S 2018 Phys. Plasmas 25 073104Google Scholar

    [25]

    关晓通 2018 博士学位论文 (成都: 电子科技大学)

    Guan X T 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [26]

    Liu S G, Zhang Y X, Yin Y 2011 J. Phys. D Appl. Phys. 44 375105Google Scholar

    [27]

    Luchinin A G, Nusinovich G S 1984 Int. J. Electron. 57 827Google Scholar

    [28]

    Nusinovich G S 2019 Phys. Plasmas 26 053107Google Scholar

    [29]

    韩煜, 袁学松, 马春燕, 鄢扬 2012 物理学报 61 064102Google Scholar

    Han Y, Yuan X S, Ma C Y, Yan Y 2012 Acta Phys. Sin. 61 064102Google Scholar

    [30]

    Zhou J, Liu D G, Liao C, Li Z H 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [5] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [6] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [7] 马明宇, 吴晗, 陈卓. 金属开口环谐振器超构分子中二次谐波偏振态的调控. 物理学报, 2019, 68(21): 214205. doi: 10.7498/aps.68.20190837
    [8] 张世功, 吴先梅, 张碧星, 安志武. 一维非线性声波传播特性. 物理学报, 2016, 65(10): 104301. doi: 10.7498/aps.65.104301
    [9] 张晓青, 贺号, 胡明列, 颜鑫, 张霞, 任晓敏, 王清月. 多波长飞秒激光激发下GaAs纳米线SHG特性研究. 物理学报, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [10] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [11] 周胜, 王选章, 付淑芳, 励强华, 曲秀荣, 梁爽, 张强. Voigt位型下电介质/反铁磁/电介质结构二次谐波生成非倒易性研究. 物理学报, 2012, 61(18): 187501. doi: 10.7498/aps.61.187501
    [12] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [13] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [14] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [16] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [17] 薛洪惠, 刘晓宙, 龚秀芬, 章 东. 聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究. 物理学报, 2005, 54(11): 5233-5238. doi: 10.7498/aps.54.5233
    [18] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, 2005, 54(8): 3675-3679. doi: 10.7498/aps.54.3675
    [19] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体. 物理学报, 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
    [20] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
计量
  • 文章访问数:  7807
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-12-05
  • 刊出日期:  2020-03-20

/

返回文章
返回