搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元增强的石墨烯光吸收

赵承祥 郄媛 余耀 马荣荣 秦俊飞 刘彦

引用本文:
Citation:

等离激元增强的石墨烯光吸收

赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦

Enhanced optical absorption of graphene by plasmon

Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan
PDF
HTML
导出引用
  • 石墨烯中等离激元具有特殊的光电性质, 其和入射光的强烈耦合可以引起光吸收的增强. 本文基于时域有限差分法和多体自洽场理论研究了等离激元对处于光学谐振腔中的石墨烯光吸收的影响. 由于石墨烯中等离激元与入射光动量和能量不匹配而不能直接相互作用, 因此石墨烯上施加了金属光栅结构. 研究发现光栅结构能够对入射光进行动量补偿并且能够引起其下石墨烯中的电场强度产生很大程度增强, 从而导致在该石墨烯结构中太赫兹等离激元和入射光发生强烈耦合而产生太赫兹等离极化激元, 同时引起石墨烯光吸收的增强. 希望本文能够加深对石墨烯光电特性的理解以及可以为基于石墨烯的太赫兹光电装置提供一定的理论依据.
    The plasmons in graphene have the superior properties to metal surface plasmons, such as high field confinement, low Ohmic loss and long wave propagation, highly tunable via electrostatic. More importantly, the frequency of plasmons ranges from terahertz to infrared which indicates that graphene is an ideal candidate for terahertz plamsonics. On the other hand, the strong coupling between incident photons and plasmons in graphene can lead the optical absorption to be enhanced. However, it is difficult for light to couple directly with plasmons in graphene, for the momentum of incident photons cannot match the plasmons in graphene. A metal grating can be used to compensate for the momentum of photons so that it can match that of plasmons in graphene. In this work, we theoretically investigate the effect of plasmons on the terahertz optical absorption of graphene with grating based on finite difference time domain. A great enhancement of electric field component of light field can be obtained near the gold grating strip in the sheet of graphene. Thus, the photons, of which the momentum is compensated for by the grating, can strongly couple with plasmons in graphene. An obviously decrease of the transmission of the graphene structure can be seen at the resonant frequency. The transmission peak corresponds to the resonant frequency spliting into two peaks due to the fact that two plasmon polariton modes are formed by the coupling of photons and palsmons. So we also study the plasmon polariton modes made by coupling photon with palsmon based on the many-body self-consistent method. Two plasmon polariton modes are obtained and an obviously splitting at the resonant frequency can be seen due to the coupling between photons and plasmons. The work conduces to deepening the understanding of the photoelectric properties of graphene and the terahertz plasmonics based on graphene.
      通信作者: 赵承祥, cxzhaosxnu@163.com
    • 基金项目: 国家级-国家自然科学基金(11604192)
      Corresponding author: Zhao Cheng-Xiang, cxzhaosxnu@163.com
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Chen J N, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [3]

    Duan J H, Chen R K, Chen J N 2017 Chin. Phys. B 26 117802Google Scholar

    [4]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar

    [5]

    Jablan M, Buljan H, Soljaci M 2009 Phys. Rev. B 80 245435Google Scholar

    [6]

    Fei Z, Rodin1A S, Andreev G O, Bao W, McLeod1 A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [7]

    Zhao T, Hu M, Zhong R B, Gong S, Zhang C, Liu S G 2017 Appl. Phys. Lett. 110 231102Google Scholar

    [8]

    Liao B X, Guo X D, Hu H, Liu N, Chen K, Yang X X, Dai Q 2018 Chin. Phys. B 27 094101Google Scholar

    [9]

    Liu J P, Zhai X, Wang L L, Li F H J, Lin Q, Xia S X 2016 Plasmonics 11 703Google Scholar

    [10]

    Jang Y H, Rani A, Quan L N, Adinolfi V, Kanjanaboos P, Ouellette O, Son T, Jang Y J, Chung K W, Kwon H, Kim D, Kim D H, Sargent, E H 2017 ACS Energy Lett. 2 117Google Scholar

    [11]

    Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics 10 244Google Scholar

    [12]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [13]

    Gao W L, Shi G, Jin Z H, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q F 2013 Nano Lett. 13 3698Google Scholar

    [14]

    Zhao C X, Xu W, Li L L, Zhang C, Peeters F M 2015 J. Appl. Phys. 117 223104Google Scholar

    [15]

    Lyaschuk Y M, Korotyeyev V V 2012 Ukr. J. Phys. Opt. 13 142Google Scholar

    [16]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [17]

    Etchegoin P G, Le Ru E C, Meyer M 2006 J. Chem. Phys. 125 164705Google Scholar

    [18]

    Kotov O V, Lozovik Y E 2011 Phys. Lett. A 375 2573Google Scholar

    [19]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203Google Scholar

    [20]

    Yan B, Fang J Y, Qin S Q, Liu Y T, Chen L, Chen S, Li R B, Han Z 2017 Chin. Phys. B 26 097802Google Scholar

    [21]

    Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol 7 330Google Scholar

    [22]

    Dong H M, Li L L, Wang W Y, Zhang S H, Zhao C X, Xu W 2012 Physica E 44 1889Google Scholar

    [23]

    Huang Y D, Qin H, Zhang B S, Wu J B, Zhou G C, Jin B B 2013 Appl. Phys. Lett. 102 253106Google Scholar

    [24]

    Chaplik A V 1972 Sov. Phys. JETP 35 395

    [25]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [26]

    Mo S D, Ching W Y 1998 Phys. Rev. B 57 15219Google Scholar

    [27]

    Shur M 2010 Electron. Lett. 46 S18Google Scholar

    [28]

    Dong H M, Zhang J, Peeters F M, Xu W 2009 J. Appl. Phys. 106 043103Google Scholar

    [29]

    Hwang E H, Sarma S Das 2008 Phys. Rev. B 77 195412Google Scholar

  • 图 1  基于石墨烯的装置示意图(从上至下依次是金光栅/Al2O3薄膜/石墨烯/SiO2/Si; dw分别代表光栅的周期和光栅条的宽度; 虚线框内的结构可以充当谐振腔的作用; L是谐振腔的厚度)

    Fig. 1.  Schematic illustration of the device based on graphene. From top to bottom, there are the gold grating layer, Al2O3 dielectric medium, graphene sheet, and SiO2/Si layer. Here, d and w are respectively the period and the width of the gold strips. The structure sketched by the dotted line can be served as cavity and L is the cavity length.

    图 2  (a)存在(黑色实线)和不存在(红色实线)石墨烯时的结构透射谱; (b)存在(黑色实线)和不存在(红色实线)石墨烯时的结构吸收谱

    Fig. 2.  (a) Frequency dependence of the light transmission of the structure with (black solid line) and without graphene (red solid line); (b) frequency dependence of the light absorption of the structure with (black solid line) and without graphene (red solid line).

    图 3  不同的光栅占空比${f_0}$下, 在石墨烯层中入射电磁波的电场分量${E_x}$ (a) 和${E_z}$ (b)沿着x方向的分布

    Fig. 3.  Spatial distribution of the electric field ${E_x}$ (a) and${E_z}$ (b) components of light field along the x direction in graphene sheet for different factor${f_0}$.

    图 4  $n = 5$的腔模光子(红色虚线)和石墨烯中等离激元(红色实线)耦合形成等离极化激元模式(黑色实线)随着电子浓度的变化

    Fig. 4.  The electron density dependence of the plasmon polariton modes (black solid lines) induced by coupling between cavity photons ($n = 5$, red dotted lines) and plasmon modes in graphene (red solid line).

  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Chen J N, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [3]

    Duan J H, Chen R K, Chen J N 2017 Chin. Phys. B 26 117802Google Scholar

    [4]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar

    [5]

    Jablan M, Buljan H, Soljaci M 2009 Phys. Rev. B 80 245435Google Scholar

    [6]

    Fei Z, Rodin1A S, Andreev G O, Bao W, McLeod1 A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [7]

    Zhao T, Hu M, Zhong R B, Gong S, Zhang C, Liu S G 2017 Appl. Phys. Lett. 110 231102Google Scholar

    [8]

    Liao B X, Guo X D, Hu H, Liu N, Chen K, Yang X X, Dai Q 2018 Chin. Phys. B 27 094101Google Scholar

    [9]

    Liu J P, Zhai X, Wang L L, Li F H J, Lin Q, Xia S X 2016 Plasmonics 11 703Google Scholar

    [10]

    Jang Y H, Rani A, Quan L N, Adinolfi V, Kanjanaboos P, Ouellette O, Son T, Jang Y J, Chung K W, Kwon H, Kim D, Kim D H, Sargent, E H 2017 ACS Energy Lett. 2 117Google Scholar

    [11]

    Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics 10 244Google Scholar

    [12]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [13]

    Gao W L, Shi G, Jin Z H, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q F 2013 Nano Lett. 13 3698Google Scholar

    [14]

    Zhao C X, Xu W, Li L L, Zhang C, Peeters F M 2015 J. Appl. Phys. 117 223104Google Scholar

    [15]

    Lyaschuk Y M, Korotyeyev V V 2012 Ukr. J. Phys. Opt. 13 142Google Scholar

    [16]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [17]

    Etchegoin P G, Le Ru E C, Meyer M 2006 J. Chem. Phys. 125 164705Google Scholar

    [18]

    Kotov O V, Lozovik Y E 2011 Phys. Lett. A 375 2573Google Scholar

    [19]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203Google Scholar

    [20]

    Yan B, Fang J Y, Qin S Q, Liu Y T, Chen L, Chen S, Li R B, Han Z 2017 Chin. Phys. B 26 097802Google Scholar

    [21]

    Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol 7 330Google Scholar

    [22]

    Dong H M, Li L L, Wang W Y, Zhang S H, Zhao C X, Xu W 2012 Physica E 44 1889Google Scholar

    [23]

    Huang Y D, Qin H, Zhang B S, Wu J B, Zhou G C, Jin B B 2013 Appl. Phys. Lett. 102 253106Google Scholar

    [24]

    Chaplik A V 1972 Sov. Phys. JETP 35 395

    [25]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [26]

    Mo S D, Ching W Y 1998 Phys. Rev. B 57 15219Google Scholar

    [27]

    Shur M 2010 Electron. Lett. 46 S18Google Scholar

    [28]

    Dong H M, Zhang J, Peeters F M, Xu W 2009 J. Appl. Phys. 106 043103Google Scholar

    [29]

    Hwang E H, Sarma S Das 2008 Phys. Rev. B 77 195412Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231657
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [7] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [8] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [13] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [14] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [15] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [18] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [19] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [20] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
计量
  • 文章访问数:  7377
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-12-23
  • 刊出日期:  2020-03-20

/

返回文章
返回