搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维方形量子点体系等离激元的量子化

吴仍来 肖世发 薛红杰 全军

引用本文:
Citation:

二维方形量子点体系等离激元的量子化

吴仍来, 肖世发, 薛红杰, 全军

Quantization of plasmon in two-dimensional square quantum dot system

Wu Reng-Lai, Xiao Shi-Fa, Xue Hong-Jie, Quan Jun
PDF
导出引用
  • 量子点体系等离激元的研究是光电子学领域的热点.为进一步加深和完善对等离激元的量子效应的认识,本文利用紧束缚近似和线性响应理论研究了二维方形量子点体系对外场的集体响应.结果表明,当外场频率等于等离激元的频率时,量子点体系会有强烈的电荷振荡,并伴随着能量的极大吸收和近场的增强.在量子点中,等离子体存在分立的元激发.等离子体元激发的个数将随着量子点尺寸和电子个数的增加而增加.随量子点尺寸的增加,分立的等离激元将逐步呈现准连续的特性,即过渡为经典连续的等离激元,其频谱曲线演化为经典的色散曲线.结果还表明:随量子点尺寸的增加,等离激元的频率会红移,等离激元的激发强度会增大;随量子点中电子数的增加,等离激元的频率会蓝移,等离激元的激发强度会增大.
    Plasmon in quantum dot system is one of the most notable research topics in the field of optoelectronics. With the development of nanotechnology, plasmon in nano-structure has received considerable attention due to its potential applications in future natural science areas. To better understand the quantum effect and the properties of plasmon, in this paper we use the linear response theory and the tight-binding approximation to investigate the collective response of charge in a twodimensional square quantum dot system. The results show that when the frequency of the external field equals the frequency of the plasmon, there are strong charge collective oscillations in the quantum dot system, accompanied by great energy absorption and near-field enhancement. Owing to the quantization of plasmon, the collective charge oscillations in a two-dimensional square quantum dot system are found at different frequencies. The number of quantum modes of plasmon increases with the size and electron number of square quantum dots increasing, this behaviour of quantum mode of plasmon is similar to the one of phonon. The reasons for this behaviour are as follows. First, with the increase of quantum dot size, there are more energy levels around the fermi energy, and the electrons can jump from more energy levels to the outside of fermi circle, so there are more collective excitation frequencies (i.e., more quantum modes of plasmon) in a larger size system. Second, with the increase of electron number in quantum dots, there are more energy levels occupied by electrons, so there are more quantum modes of plasmon too. Furthermore, the size dependence of plasmon shows that with the increase of quantum dot size, the frequency interval between two neighbouring modes of plasmon is smaller, and the discrete modes of plasmon will gradually display quasi-continuous characteristic and transform gradually into the classical continuous modes of plasmon, and the frequency spectrum of plasmon turns into the classical dispersion relation. Such a characteristic is in accord with Bohr's correspondence principle, implying that the quantum plasmon and classical plasmon are gradually unified in a macroscopic size. The dependence of plasmon on the size and electron number of quantum dots also show that with the increase of the quantum dot size, the frequencies of the plasmon is red-shifted and the excitation intensity of the plasmon increases; with the increase of the electron number in quantum dot, the frequency of the plasmon is blue-shifted and the excitation intensity of the plasmon increases.
      通信作者: 全军, quanj@lingnan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11647156)和广东省自然科学基金(批准号:2014A030307035)资助的课题.
      Corresponding author: Quan Jun, quanj@lingnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11647156) and Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030307035).
    [1]

    Huang S Y, Chew W C, Liu Y G, Wu B I, Choi H W 2012 J. Appl. Phys. 111 034308

    [2]

    Haran G 2010 AIP Conf. Proc. 1267 59

    [3]

    Menegazzo N, Kegel L L, Kim Y C, Allen D L, Booksh K S 2012 Rev. Sci. Instrum. 83 095113

    [4]

    Koller D M, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Krenn J R 2008 Nat. Photon. 2 684

    [5]

    Walters R J, van Loon R V A, Brunets I, Schmitz J, Polman A 2009 Nat. Mater. 9 21

    [6]

    Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P 2011 Nat. Mater. 10 631

    [7]

    Lal S, Clare S E, Halas N J 2008 Acc. Chem. Res. 41 1842

    [8]

    de Abajo F J 2012 Nature 483 417

    [9]

    Yuan Z, Gao S 2008 Phys. Rev. B 78 235413

    [10]

    Yan J, Yuan Z, Gao S 2007 Phys. Rev. Lett. 98 216602

    [11]

    Cassidy A, Grigorenko I, Haas S 2008 Phys. Rev. B 77 245404

    [12]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887

    [13]

    Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 23011

    [14]

    Moaied M, Yajadda M M A, Ostrikov K 2015 Plasmonics 10 1615

    [15]

    Gu S J, Deng S S, Li Y Q, Lin H Q 2004 Phys. Rev. Lett. 93 086402

    [16]

    Niehaus T A, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T 2001 Phys. Rev. B 63 247

    [17]

    Xu Z, Chiesa S, Yang S, Su S Q, Sheehy D E, Moreno J 2011 Phys. Rev. A 84 9325

    [18]

    Yu Y Q, Yu Y B, Xue H J, Wang Y X, Chen J 2016 Physica B 496 26

    [19]

    Muniz R A, Haas S, Levi A F J, Grigorenko I 2009 Phys. Rev. B 80 1132

    [20]

    Xin W, Wu R L, Xue H J, Yu Y B 2013 Acta Phys. Sin. 62 177301 (in Chinese) [辛旺, 吴仍来, 薛红杰, 余亚斌 2013 物理学报 62 177301]

    [21]

    Wu R, Xue H, Yu Y, Hu H, Liu Q 2014 Europhys. Lett. 108 27001

    [22]

    Wu R, Xue H, Yu Y, Hu H 2014 Phys. Lett. A 378 2295

    [23]

    Li Z Z 2002 Solid State Theory (2nd Ed.) (Beijing: Higher Education Press) p108 (in Chinese) [李正中 2002 固体理论 (第二版)(北京: 高等教育出版社) 第 108 页]

    [24]

    Liu D D, Zhang H 2011 Chin. Phys. B 20 097105

    [25]

    Liu D D, Zhang H, Cheng X L 2012 J. Appl. Phys. 112 053707

  • [1]

    Huang S Y, Chew W C, Liu Y G, Wu B I, Choi H W 2012 J. Appl. Phys. 111 034308

    [2]

    Haran G 2010 AIP Conf. Proc. 1267 59

    [3]

    Menegazzo N, Kegel L L, Kim Y C, Allen D L, Booksh K S 2012 Rev. Sci. Instrum. 83 095113

    [4]

    Koller D M, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Krenn J R 2008 Nat. Photon. 2 684

    [5]

    Walters R J, van Loon R V A, Brunets I, Schmitz J, Polman A 2009 Nat. Mater. 9 21

    [6]

    Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P 2011 Nat. Mater. 10 631

    [7]

    Lal S, Clare S E, Halas N J 2008 Acc. Chem. Res. 41 1842

    [8]

    de Abajo F J 2012 Nature 483 417

    [9]

    Yuan Z, Gao S 2008 Phys. Rev. B 78 235413

    [10]

    Yan J, Yuan Z, Gao S 2007 Phys. Rev. Lett. 98 216602

    [11]

    Cassidy A, Grigorenko I, Haas S 2008 Phys. Rev. B 77 245404

    [12]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887

    [13]

    Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 23011

    [14]

    Moaied M, Yajadda M M A, Ostrikov K 2015 Plasmonics 10 1615

    [15]

    Gu S J, Deng S S, Li Y Q, Lin H Q 2004 Phys. Rev. Lett. 93 086402

    [16]

    Niehaus T A, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T 2001 Phys. Rev. B 63 247

    [17]

    Xu Z, Chiesa S, Yang S, Su S Q, Sheehy D E, Moreno J 2011 Phys. Rev. A 84 9325

    [18]

    Yu Y Q, Yu Y B, Xue H J, Wang Y X, Chen J 2016 Physica B 496 26

    [19]

    Muniz R A, Haas S, Levi A F J, Grigorenko I 2009 Phys. Rev. B 80 1132

    [20]

    Xin W, Wu R L, Xue H J, Yu Y B 2013 Acta Phys. Sin. 62 177301 (in Chinese) [辛旺, 吴仍来, 薛红杰, 余亚斌 2013 物理学报 62 177301]

    [21]

    Wu R, Xue H, Yu Y, Hu H, Liu Q 2014 Europhys. Lett. 108 27001

    [22]

    Wu R, Xue H, Yu Y, Hu H 2014 Phys. Lett. A 378 2295

    [23]

    Li Z Z 2002 Solid State Theory (2nd Ed.) (Beijing: Higher Education Press) p108 (in Chinese) [李正中 2002 固体理论 (第二版)(北京: 高等教育出版社) 第 108 页]

    [24]

    Liu D D, Zhang H 2011 Chin. Phys. B 20 097105

    [25]

    Liu D D, Zhang H, Cheng X L 2012 J. Appl. Phys. 112 053707

  • [1] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, 2022, 71(11): 110703. doi: 10.7498/aps.71.20220380
    [2] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法. 物理学报, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [3] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [4] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [5] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [8] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [9] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [10] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [11] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [12] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [13] 寻大毛, 欧阳涛, 谈荣日, 刘慧宣. 悬链曲面上的点粒子动力学及扩展空间约束系统量子化. 物理学报, 2015, 64(24): 240305. doi: 10.7498/aps.64.240305
    [14] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [15] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [16] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [17] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [18] 谢月新, 李志坚, 周光辉. 介观耗散电容耦合电路量子化中的正则变换. 物理学报, 2007, 56(12): 7224-7229. doi: 10.7498/aps.56.7224
    [19] 娄太平. 具有广义协变的包含重力场贡献的重力场方程. 物理学报, 2006, 55(4): 1602-1606. doi: 10.7498/aps.55.1602
    [20] 宋同强. 耗散介观电容耦合电路的量子化. 物理学报, 2004, 53(5): 1352-1356. doi: 10.7498/aps.53.1352
计量
  • 文章访问数:  3028
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-19
  • 修回日期:  2017-08-19
  • 刊出日期:  2017-11-05

二维方形量子点体系等离激元的量子化

  • 1. 岭南师范学院物理科学与技术学院, 湛江 524048;
  • 2. 西安航空学院电子工程学院, 西安 710077
  • 通信作者: 全军, quanj@lingnan.edu.cn
    基金项目: 国家自然科学基金(批准号:11647156)和广东省自然科学基金(批准号:2014A030307035)资助的课题.

摘要: 量子点体系等离激元的研究是光电子学领域的热点.为进一步加深和完善对等离激元的量子效应的认识,本文利用紧束缚近似和线性响应理论研究了二维方形量子点体系对外场的集体响应.结果表明,当外场频率等于等离激元的频率时,量子点体系会有强烈的电荷振荡,并伴随着能量的极大吸收和近场的增强.在量子点中,等离子体存在分立的元激发.等离子体元激发的个数将随着量子点尺寸和电子个数的增加而增加.随量子点尺寸的增加,分立的等离激元将逐步呈现准连续的特性,即过渡为经典连续的等离激元,其频谱曲线演化为经典的色散曲线.结果还表明:随量子点尺寸的增加,等离激元的频率会红移,等离激元的激发强度会增大;随量子点中电子数的增加,等离激元的频率会蓝移,等离激元的激发强度会增大.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回