搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用石墨烯等离激元与表面声子耦合增强量子摩擦

张超杰 周婷 杜鑫鹏 王同标 刘念华

引用本文:
Citation:

利用石墨烯等离激元与表面声子耦合增强量子摩擦

张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华

Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons

Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua
PDF
导出引用
  • 详细研究了以SiC为基底的石墨烯之间量子摩擦.由于SiC可以支持表面声子极化子,石墨烯可以支持表面等离激元,在一定的频率范围,表面声子极化子和等离激元能够耦合.发现相对于单纯石墨烯或SiC来说,由于表面声子极化子与石墨烯等离激元的共同作用,以SiC为基底的石墨烯之间的量子摩擦有很大的增强.此外,我们发现量子摩擦系数随石墨烯化学势的增加先增加后减小,摩擦系数可以取得最大值.本文的研究对于微/纳机电系统的制作具有积极的意义.
    In our daily life, frictions are very common when two bodies in direct contact relatively move. However, when two bodies are separated by a finite distance, due to the quantum fluctuations inside the bodies, they may still experience a friction when they relatively move. Such a phenomenon is often called quantum friction, which has been studied for more than a decade. It has shown in previous studies that the surface modes, such as surface phonon polaritions (SPhPs) or surface plasmon polaritions (SPPs) have significant contribution to enhancing the quantum friction. However, to the best of our knowledge, the contribution of coupling from SPhPs and SPPs to quantum friction is still unknown. Here, we report a detailed study on the quantum frictions between two graphene sheets with the silicon carbide (SiC) substrates. For comparison, the quantum frictions between two other samples, i.e., SiC/SiC and graphene/graphene are also studied. As indicated in previous studies, SPhPs and SPPs, supported by SiC and graphene, respectively, can couple together in special frequency ranges. The coupling of SPhPs and SPPs can be tuned by varying the chemical potential of graphene. The coupling modes shift toward higher frequency as the chemical potential increases. Firstly, we analyze qualitatively the effects of coupled surface modes on quantum friction with the help of dispersion relation. Secondly, we calculate the quantum friction coefficients numerically for the three different samples. We find that due to the coupling of SPhPs and SPPs, the quantum friction between graphene sheets with SiC substrates is larger than that between the SiC or monolayer graphene sheets. We demonstrate that the coupling of SPhPs and SPPs can be modulated by chemical potential of graphene; therefore, the relationship between quantum friction coefficient and chemical potential is also studied. We observe that with the increase of chemical potential, quantum friction coefficient follows a non-monotonic trend, i.e., it first increases to its maximum value then decreases. We believe that our studies are not only helpful in understanding the micro mechanisms of friction, but also meaningful in the fabrications of micro- and nano-electromechanical systems.
      通信作者: 王同标, tbwang@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264029,11264030)和江西省自然科学基金(批准号:20151BAB202017)资助的课题.
      Corresponding author: Wang Tong-Biao, tbwang@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264029, 11264030) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB202017).
    [1]

    Dorofeyev I, Fuchs H, Wenning G, Gotsmann B 1999 Phys. Rev. Lett. 83 2402

    [2]

    Stipe B C, Mamin H J, Stowe T D, Kenny T W, Rugar D 2001 Phys. Rev. Lett. 87 096801

    [3]

    Kuehn S, Loring R F, Marohn J A 2006 Phys. Rev. Lett. 96 156103

    [4]

    Buchanan M 2007 Nat. Phys. 3 827

    [5]

    Saitoh K, Hayashi K, Shibayama Y, Shirahama K 2010 Phys. Rev. Lett. 105 236103

    [6]

    She J H, Balatsky A V 2012 Phys. Rev. Lett. 108 136101

    [7]

    Pendry J B 1997 J. Phys. Condens. Matter 9 10301

    [8]

    Volokitin A I, Persson B N J 2001 J. Phys. Condens. Matter 13 859

    [9]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115419

    [10]

    Volokitin A I, Persson B N J 2003 Phys. Rev. Lett. 91 106101

    [11]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115420

    [12]

    Volokitin A I, Persson B N J 2005 Phys. Rev. Lett. 94 086104

    [13]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291

    [14]

    Volokitin A I, Persson B N J 2011 Phys. Rev. Lett. 106 094502

    [15]

    Philbin T G, Leonhardt U 2009 New J. Phys. 11 033035

    [16]

    Pendry J B 2010 New J. Phys. 12 033028

    [17]

    Leonhardt U 2010 New J. Phys. 12 068001

    [18]

    Pendry J B 2010 New J. Phys. 12 068002

    [19]

    Volokitin A I, Persson B N J 2011 New J. Phys. 13 068001

    [20]

    Philbin T G, Leonhardt U 2011 New J. Phys. 13 068002

    [21]

    Silveririnha M G 2014 New J. Phys. 16 063011

    [22]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. Lett. 105 113601

    [23]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. A 82 063827

    [24]

    Zhao R, Manjavacas A, García de Abajo F J, Pendry J B 2012 Phys. Rev. Lett. 109 123604

    [25]

    Bercegol H, Lehoucq R 2015 Phys. Rev. Lett. 115 090402

    [26]

    Intravaia F, Behunin R O, Dalvit D A R 2014 Phys. Rev. A 89 050101

    [27]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [28]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451

    [29]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [30]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [31]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [32]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [33]

    Freitag M, Low T, Xia F, Avouris P 2013 Nat. Photonics 7 53

    [34]

    Stauber T, Peres N M R, Geim A K 2008 Phys. Rev. B 78 085432

    [35]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [36]

    Falkovsky L A, Pershoguba S S 2007 Phys. Rev. B 76 153410

    [37]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [38]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [39]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [40]

    Wang T B, Liu N H, Liu J T, Yu T B 2014 Eur. Phys. J. B 87 185

  • [1]

    Dorofeyev I, Fuchs H, Wenning G, Gotsmann B 1999 Phys. Rev. Lett. 83 2402

    [2]

    Stipe B C, Mamin H J, Stowe T D, Kenny T W, Rugar D 2001 Phys. Rev. Lett. 87 096801

    [3]

    Kuehn S, Loring R F, Marohn J A 2006 Phys. Rev. Lett. 96 156103

    [4]

    Buchanan M 2007 Nat. Phys. 3 827

    [5]

    Saitoh K, Hayashi K, Shibayama Y, Shirahama K 2010 Phys. Rev. Lett. 105 236103

    [6]

    She J H, Balatsky A V 2012 Phys. Rev. Lett. 108 136101

    [7]

    Pendry J B 1997 J. Phys. Condens. Matter 9 10301

    [8]

    Volokitin A I, Persson B N J 2001 J. Phys. Condens. Matter 13 859

    [9]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115419

    [10]

    Volokitin A I, Persson B N J 2003 Phys. Rev. Lett. 91 106101

    [11]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115420

    [12]

    Volokitin A I, Persson B N J 2005 Phys. Rev. Lett. 94 086104

    [13]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291

    [14]

    Volokitin A I, Persson B N J 2011 Phys. Rev. Lett. 106 094502

    [15]

    Philbin T G, Leonhardt U 2009 New J. Phys. 11 033035

    [16]

    Pendry J B 2010 New J. Phys. 12 033028

    [17]

    Leonhardt U 2010 New J. Phys. 12 068001

    [18]

    Pendry J B 2010 New J. Phys. 12 068002

    [19]

    Volokitin A I, Persson B N J 2011 New J. Phys. 13 068001

    [20]

    Philbin T G, Leonhardt U 2011 New J. Phys. 13 068002

    [21]

    Silveririnha M G 2014 New J. Phys. 16 063011

    [22]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. Lett. 105 113601

    [23]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. A 82 063827

    [24]

    Zhao R, Manjavacas A, García de Abajo F J, Pendry J B 2012 Phys. Rev. Lett. 109 123604

    [25]

    Bercegol H, Lehoucq R 2015 Phys. Rev. Lett. 115 090402

    [26]

    Intravaia F, Behunin R O, Dalvit D A R 2014 Phys. Rev. A 89 050101

    [27]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [28]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451

    [29]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [30]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [31]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [32]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [33]

    Freitag M, Low T, Xia F, Avouris P 2013 Nat. Photonics 7 53

    [34]

    Stauber T, Peres N M R, Geim A K 2008 Phys. Rev. B 78 085432

    [35]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [36]

    Falkovsky L A, Pershoguba S S 2007 Phys. Rev. B 76 153410

    [37]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [38]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [39]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [40]

    Wang T B, Liu N H, Liu J T, Yu T B 2014 Eur. Phys. J. B 87 185

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [4] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [6] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [7] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [10] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [14] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [15] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [16] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [19] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
计量
  • 文章访问数:  3769
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-08-30
  • 刊出日期:  2016-12-05

利用石墨烯等离激元与表面声子耦合增强量子摩擦

  • 1. 南昌大学物理系, 南昌 330031;
  • 2. 南昌大学高等研究院, 南昌 330031
  • 通信作者: 王同标, tbwang@ncu.edu.cn
    基金项目: 国家自然科学基金(批准号:11264029,11264030)和江西省自然科学基金(批准号:20151BAB202017)资助的课题.

摘要: 详细研究了以SiC为基底的石墨烯之间量子摩擦.由于SiC可以支持表面声子极化子,石墨烯可以支持表面等离激元,在一定的频率范围,表面声子极化子和等离激元能够耦合.发现相对于单纯石墨烯或SiC来说,由于表面声子极化子与石墨烯等离激元的共同作用,以SiC为基底的石墨烯之间的量子摩擦有很大的增强.此外,我们发现量子摩擦系数随石墨烯化学势的增加先增加后减小,摩擦系数可以取得最大值.本文的研究对于微/纳机电系统的制作具有积极的意义.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回