搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器

邓红梅 黄磊 李静 陆叶 李传起

引用本文:
Citation:

基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器

邓红梅, 黄磊, 李静, 陆叶, 李传起

Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs

Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi
PDF
导出引用
  • 本文设计并数值研究了一种石墨烯加载的不对称金属纳米天线对结构.利用石墨烯费米能级的动态调控特性,实现了电控表面等离激元的单向传输.类似于传统的三明治型纳米天线结构,设计的不对称金属纳米天线对结构可以等效为两个共振的磁偶极子,由于磁偶极子辐射电磁波的干涉,将导致单向传输效应.通过计算腔中的电场分布,发现石墨烯的调谐能力与石墨烯区域的电场强度成正比关系.以上现象都可以通过等效电路模型进行理论解释.此外,该结构具有小尺寸、高效率、宽带宽和易于光电集成等优点,在未来的光子集成与光电子学领域将具有重要的应用.
    Surface plasmon polaritons (SPPs), the electromagnetic waves traveling along metal-dielectric or metal-air interface, which originate from the interactions between light and collective electron oscillations on metal surface, have received considerable attention for their promising applications in the future optical field, such as image, breaking diffraction limit, subwavelength-optics microscopy, lithography, etc. However, one of the fundamental issues in plasmonics is how to actively manipulate the propagation direction of SPPs. In this paper, we propose and numerically investigate a graphene-based unidirectional SPP coupler, which is composed of asymmetric plasmonic nanoantenna pairs with a graphene sheet separated by a SiO2 spacer from the gold substrate. The device geometry facilitates the simultaneous excitation of two localized surface plasmon resonances in the entire structure, and consequently, the asymmetric nanoantenna pairs can be considered as being composed of two oscillating magnetic dipoles or as two SPP sources. Because the resonance of the plasmonic antenna pairs depends on the bias voltage applied across graphene sheet and back-gated Au, the phase difference between radiated electromagnetic waves induced by the antenna can be tuned through varying the Fermi level of graphene. Here, approximately a n/2 phase difference between radiated electromagnetic (EM) waves can be acquired at EF 0.81 eV, which indicates that the radiated EM waves can interfere constructively along the direction of the x-axis while interfere destructively along the opposite direction. This directional propagation of EM wave leads to the unidirectional propagation of SPPs. Furthermore, electric field distribution of the cavity demonstrates that the tunability of plasmonic antenna is proportional to the electric field intensity in the vicinity of the graphene region. For our designed structure, the left cavity can provide a significantly larger tunable range than the right one. With this result, we can quantitatively analyze the tuning behavior of graphene-loaded plasmonic antenna based on equivalent circuit model, and draw the conclusions that the unidirectional SPP propagation effect originates from the interference mechanism. In addition, compared with the device reported previously, our proposed device possesses a huge extinction ratio (2600) and more broadband tunable wavelength range (6.3-7.5 m). In addition, it is possible to make up for the deficiencies of current nanofabrication technologies by utilizing its actively controlled capability. All the above results indicate that the proposed active device promises to realize a compactable, tunable, and broadband terahertz plasmonic light source. It will play an important role in future photonic integrations and optoelectronics.
      Corresponding author: Huang Lei, huanglei313663@163.com;lcq@mailbox.gxnu.edu.cn ; Li Chuan-Qi, huanglei313663@163.com;lcq@mailbox.gxnu.edu.cn
    • Funds: Project supported by the Guangxi Scientific Research and Technological Development Program Topics, China (Grant No. 1598007-12) and the Innovation Project of Guangxi Graduate Education, China (Grant No. YCSZ2016035).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278

    [3]

    Chu Y Z, Banaee M G, Crozier K B 2010 ACS Nano 4 2804

    [4]

    Xia F N, Mueller T, Lin Y M, Garcia A V, Avouris P 2009 Nat. Nanotechnol. 4 839

    [5]

    Huang L, Fan Y H, Wu S, Yu L Z 2015 Chin. Phys. Lett. 32 094101

    [6]

    Li C Q, Huang L, Wang W Y, Ma X J, Zhou S B, Jiang Y H 2015 Opt. Commun. 355 337

    [7]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [8]

    He M D, Gong Z Q, Li S, Luo Y F, Liu J Q, Chen X S 2011 Opt. Commun. 284 368

    [9]

    Gao J, He M D, Chen K Q 2013 Opt. Commun. 291 366

    [10]

    He M D, Liu J Q, Gong Z Q, Li S, Luo Y F 2012 Opt. Commun. 285 182

    [11]

    Yang J, Zhou S X, Hu C, Zhang W W, Xiao X, Zhang J S 2014 Laser Photon. Rev. 8 590

    [12]

    Liu T R, Shen Y, Shin W, Zhu Q Z, Fan S H, Jin C J 2014 Nano Lett. 14 3848

    [13]

    Xiao S Y, Zhong F, Liu H, Zhu S N, Li J S 2015 Nat. Commun. 6 8326

    [14]

    Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S 2014 Light: Sci. Appl. 3 e197

    [15]

    Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B, Zhang X 2012 Nano Lett. 12 4853

    [16]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [17]

    Bao Y J, Zu S, Zhang Y F, Fang Z Y 2015 ACS Photon. 2 1135

    [18]

    He M D, Wang K J, Wang L, Li J B, Liu J Q, Huang Z R, Wang L L, Wang L, Hu W D, Chen X S 2014 Appl. Phys. Lett. 105 081903

    [19]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [20]

    Vakil A, Engheta N 2011 Science 332 1291

    [21]

    Zhu L, Fan Y H, Wu S, Yu L Z, Zhang K Y, Zhang Y 2015 Opt. Commun. 346 120

    [22]

    Chen J J, Li Z, Yue S, Gong Q H 2010 Appl. Phys. Lett. 97 041113

    [23]

    Huang L, Wu S, Wang Y L, Ma X J, Deng H M, Wang S M, Lu Y, Li C Q, Li T 2017 Opt. Mater. Express 7 569

    [24]

    Wang Z L 2009 Prog. Phys. 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [25]

    Yang J, Xiao X, Hu C, Zhang W W, Zhou S X, Zhang J S 2014 Nano Lett. 14 704

    [26]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278

    [3]

    Chu Y Z, Banaee M G, Crozier K B 2010 ACS Nano 4 2804

    [4]

    Xia F N, Mueller T, Lin Y M, Garcia A V, Avouris P 2009 Nat. Nanotechnol. 4 839

    [5]

    Huang L, Fan Y H, Wu S, Yu L Z 2015 Chin. Phys. Lett. 32 094101

    [6]

    Li C Q, Huang L, Wang W Y, Ma X J, Zhou S B, Jiang Y H 2015 Opt. Commun. 355 337

    [7]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [8]

    He M D, Gong Z Q, Li S, Luo Y F, Liu J Q, Chen X S 2011 Opt. Commun. 284 368

    [9]

    Gao J, He M D, Chen K Q 2013 Opt. Commun. 291 366

    [10]

    He M D, Liu J Q, Gong Z Q, Li S, Luo Y F 2012 Opt. Commun. 285 182

    [11]

    Yang J, Zhou S X, Hu C, Zhang W W, Xiao X, Zhang J S 2014 Laser Photon. Rev. 8 590

    [12]

    Liu T R, Shen Y, Shin W, Zhu Q Z, Fan S H, Jin C J 2014 Nano Lett. 14 3848

    [13]

    Xiao S Y, Zhong F, Liu H, Zhu S N, Li J S 2015 Nat. Commun. 6 8326

    [14]

    Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S 2014 Light: Sci. Appl. 3 e197

    [15]

    Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B, Zhang X 2012 Nano Lett. 12 4853

    [16]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [17]

    Bao Y J, Zu S, Zhang Y F, Fang Z Y 2015 ACS Photon. 2 1135

    [18]

    He M D, Wang K J, Wang L, Li J B, Liu J Q, Huang Z R, Wang L L, Wang L, Hu W D, Chen X S 2014 Appl. Phys. Lett. 105 081903

    [19]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [20]

    Vakil A, Engheta N 2011 Science 332 1291

    [21]

    Zhu L, Fan Y H, Wu S, Yu L Z, Zhang K Y, Zhang Y 2015 Opt. Commun. 346 120

    [22]

    Chen J J, Li Z, Yue S, Gong Q H 2010 Appl. Phys. Lett. 97 041113

    [23]

    Huang L, Wu S, Wang Y L, Ma X J, Deng H M, Wang S M, Lu Y, Li C Q, Li T 2017 Opt. Mater. Express 7 569

    [24]

    Wang Z L 2009 Prog. Phys. 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [25]

    Yang J, Xiao X, Hu C, Zhang W W, Zhou S X, Zhang J S 2014 Nano Lett. 14 704

    [26]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [5] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [9] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [10] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [11] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [12] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [13] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [14] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [15] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [16] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发. 物理学报, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
计量
  • 文章访问数:  6312
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-06
  • 修回日期:  2017-04-20
  • 刊出日期:  2017-07-05

/

返回文章
返回