-
基于聚苯乙烯球自组装法, 在P型氮化镓(P-GaN)衬底上制备了有序致密的掩模板; 采用热蒸发法在该模板上沉积金属Al薄膜, 通过甲苯溶液去除聚苯乙烯球, 得到了金属Al纳米颗粒阵列; 采用原子层沉积法, 在Al纳米颗粒阵列表面依次沉积氧化铝(Al2O3)和氧化锌(ZnO). 通过测试Al纳米颗粒阵列的消光谱以及ZnO薄膜的光致发光谱, 研究了Al纳米颗粒表面等离激元与ZnO薄膜激子之间的耦合效应. 实验结果表明: 引入Al纳米颗粒后, 在约380 nm位置附近的ZnO近带边发光峰积分强度增强了1.91倍. 对Al纳米颗粒表面等离激元增强ZnO光致发光的机理进行探讨.During the past few decades, surface plasmons (SPs) have become a research hotspot. The SPs are the collective oscillations of free electrons at the interface between metal and dielectric surrounding. Localized surface plasmon resonance (LSPR) for metal nanoparticles (NPs) has a wide application in the light emission enhancement by the selective photon absorption and by increasing local electromagnetic field. Nowadays, many achievements of SP-enhanced-emissions are applied to light emitting diodes. With the advantages of the direct wide band gap (3.37 eV) and large exciton binding energy (60 meV), zinc oxide (ZnO), which is considered as a potential material, has a wide range of applications, especially in ultraviolet (UV) optoelectronic devices. However, the low photoluminescence efficiency of ZnO limits the commercial applications of ZnO-devices. The relevant research shows that the selection of different metal NPs, such as platinum (Pt), aluminum (Al), argentum (Ag), aurum (Au), is one of the approaches to improving the UV emission from ZnO. In this study, two-dimensional arrays of Al NPs are used to improve the LSPR photoluminescence efficiency from ZnO grown by the atomic layer deposition (ALD). The two-dimensional arrays of Al NPs are fabricated on the surfaces of p-type Gallium nitride (GaN) substrates by colloid lithography. With the air-liquid interface self-assembly, the monolayer masks for colloid lithography are obtained on the substrates of p-type GaN. Then, after a 50-nm Al layer is deposited by thermal evaporation, the Al NPs’ arrays are gained by being dipped into toluene and extra sonication to remove the masks. Finally, 15 nm Al2O3 and 200 nm ZnO films are deposited in sequence by ALD at a temperature of 125 ℃. The extinction spectra of Al NPs’ arrays are acquired by an ultraviolet-visible spectrophotometer. The results of the extinction spectra suggest that the radiative recombination rate is increased by the resonance coupling between the localized surface plasmons (LSP) of the Al NPs arrays and the excitons of the ZnO. A 1.91-fold enhancement of photoluminescence integral intensity in band-edge emission is measured because of the Al NP arrays coupled with ZnO. The result means that the LSP of the Al NPs’ arrays can increase the UV-emission of the ZnO. Therefore, this cost-effective and facile approach can be used in high-performance optoelectronic devices.
[1] You D T, Xu C X, Qin F F, Zhu Z, Manohari A G, Xu W, Zhao J, Liu W 2018 Sci. Bull. 63 38Google Scholar
[2] Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. 26 047703Google Scholar
[3] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕, 2016 物理学报 65 118104Google Scholar
Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F, Zou D S 2016 cta Phys. Sin. 65 118104Google Scholar
[4] 任艳东, 郝淑娟, 邱忠阳 2013 物理学报 62 147302Google Scholar
Ren Y D, Hao S J, Qiu Z Y 2013 Acta Phys. Sin. 62 147302Google Scholar
[5] 邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 物理学报 60 087301Google Scholar
Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301Google Scholar
[6] Yang L, Liu W, Xu H, Ma J, Zhang C, Liu C, Wang Z, Liu Y 2017 J. Mater. Chem. C 5 3288Google Scholar
[7] Feng W, Jing A, Li J, Liang G 2016 Optoe. Lett. 12 195Google Scholar
[8] Zhang S G, Zhang X W, Yin Z G, Wang J X, Si F T, Gao H L, Dong J J, Liu X 2012 J. Appl. Phys. 112 013112Google Scholar
[9] Liu W Z, Xu H Y, Zhang L X, Zhang C, Ma J G, Wang J N, Liu Y C 2012 Appl. Phys. Lett. 101 142101Google Scholar
[10] Zhang S G, Zhang X W, Yin Z G, Wang J X, Dong J J, Gao H L, Si F T, Sun S S, Tao Y 2011 Appl. Phys. Lett. 99 181116Google Scholar
[11] Chan G H, Zhao J, Schatz G C, van Duyne R P 2008 J. Phys. Chem. C 112 13958Google Scholar
[12] Wu K W, Lu Y F, He H P, Huang J Y, Zhao B H, Ye Z Z 2011 J. Appl. Phys. 110 601
[13] Lin Y 2013 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)
[14] Kao C C, Su Y K, Lin C L, Chen J J 2010 IEEE Photonic. Tech. L. 22 984Google Scholar
[15] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102Google Scholar
[16] 刘斌斌, 肖湘衡, 吴伟, 任峰, 蒋昌忠 2011 武汉大学学报: 理学版 57 205
Liu B B, Xiao X H, Wu W, Ren F, Jiang C Z 2011 J. Wuhan Univ.: Science Edition 57 205
[17] Zheng C 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[18] 陈超 2015 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)
[19] Zhang H, Su X, Wu H, Liu C 2019 J. Alloy. Compd. 772 460Google Scholar
[20] 马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139Google Scholar
Ma Y, Wang W L, Liao K J, Lü J W, Sun X L 2004 J. Funct. Mater. 35 139Google Scholar
[21] Zou S L, Janel N, Schatz G C 2004 J. Chem. Phys. 120 10871Google Scholar
[22] Shen Y Z, Swiatkiewicz J, Lin T C, Markowicz P, Prasad P N 2002 J. Phys. Chem. B 106 4040Google Scholar
[23] Zhang J Y, Ye Y H, Wang X Y, Rochon P, Xiao M 2005 Phys. Rev. B 72 201306Google Scholar
[24] Komarala V K, Rakovich Y P, Bradley A L, Byrne S J, Gun’ko Y K, Gaponik N, Eychmüller A 2006 Appl. Phys. Lett. 89 253118Google Scholar
[25] Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S 1999 Phys. Rev. B 60 11564Google Scholar
[26] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T 1998 Appl. Phys. Lett. 73 1038Google Scholar
[27] 张丽, 蒋昌忠, 任峰, 石瑛, 付强 2004 功能材料 35 160Google Scholar
Zhang L, Jiang C Z, Ren F, Shi Y, Fu Q 2004 J. Funct. Mater. 35 160Google Scholar
-
-
[1] You D T, Xu C X, Qin F F, Zhu Z, Manohari A G, Xu W, Zhao J, Liu W 2018 Sci. Bull. 63 38Google Scholar
[2] Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. 26 047703Google Scholar
[3] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕, 2016 物理学报 65 118104Google Scholar
Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F, Zou D S 2016 cta Phys. Sin. 65 118104Google Scholar
[4] 任艳东, 郝淑娟, 邱忠阳 2013 物理学报 62 147302Google Scholar
Ren Y D, Hao S J, Qiu Z Y 2013 Acta Phys. Sin. 62 147302Google Scholar
[5] 邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 物理学报 60 087301Google Scholar
Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301Google Scholar
[6] Yang L, Liu W, Xu H, Ma J, Zhang C, Liu C, Wang Z, Liu Y 2017 J. Mater. Chem. C 5 3288Google Scholar
[7] Feng W, Jing A, Li J, Liang G 2016 Optoe. Lett. 12 195Google Scholar
[8] Zhang S G, Zhang X W, Yin Z G, Wang J X, Si F T, Gao H L, Dong J J, Liu X 2012 J. Appl. Phys. 112 013112Google Scholar
[9] Liu W Z, Xu H Y, Zhang L X, Zhang C, Ma J G, Wang J N, Liu Y C 2012 Appl. Phys. Lett. 101 142101Google Scholar
[10] Zhang S G, Zhang X W, Yin Z G, Wang J X, Dong J J, Gao H L, Si F T, Sun S S, Tao Y 2011 Appl. Phys. Lett. 99 181116Google Scholar
[11] Chan G H, Zhao J, Schatz G C, van Duyne R P 2008 J. Phys. Chem. C 112 13958Google Scholar
[12] Wu K W, Lu Y F, He H P, Huang J Y, Zhao B H, Ye Z Z 2011 J. Appl. Phys. 110 601
[13] Lin Y 2013 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)
[14] Kao C C, Su Y K, Lin C L, Chen J J 2010 IEEE Photonic. Tech. L. 22 984Google Scholar
[15] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102Google Scholar
[16] 刘斌斌, 肖湘衡, 吴伟, 任峰, 蒋昌忠 2011 武汉大学学报: 理学版 57 205
Liu B B, Xiao X H, Wu W, Ren F, Jiang C Z 2011 J. Wuhan Univ.: Science Edition 57 205
[17] Zheng C 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[18] 陈超 2015 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)
[19] Zhang H, Su X, Wu H, Liu C 2019 J. Alloy. Compd. 772 460Google Scholar
[20] 马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139Google Scholar
Ma Y, Wang W L, Liao K J, Lü J W, Sun X L 2004 J. Funct. Mater. 35 139Google Scholar
[21] Zou S L, Janel N, Schatz G C 2004 J. Chem. Phys. 120 10871Google Scholar
[22] Shen Y Z, Swiatkiewicz J, Lin T C, Markowicz P, Prasad P N 2002 J. Phys. Chem. B 106 4040Google Scholar
[23] Zhang J Y, Ye Y H, Wang X Y, Rochon P, Xiao M 2005 Phys. Rev. B 72 201306Google Scholar
[24] Komarala V K, Rakovich Y P, Bradley A L, Byrne S J, Gun’ko Y K, Gaponik N, Eychmüller A 2006 Appl. Phys. Lett. 89 253118Google Scholar
[25] Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S 1999 Phys. Rev. B 60 11564Google Scholar
[26] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T 1998 Appl. Phys. Lett. 73 1038Google Scholar
[27] 张丽, 蒋昌忠, 任峰, 石瑛, 付强 2004 功能材料 35 160Google Scholar
Zhang L, Jiang C Z, Ren F, Shi Y, Fu Q 2004 J. Funct. Mater. 35 160Google Scholar
计量
- 文章访问数: 9791
- PDF下载量: 180
- 被引次数: 0