搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al纳米颗粒表面等离激元对ZnO光致发光增强的研究

刘姿 张恒 吴昊 刘昌

引用本文:
Citation:

Al纳米颗粒表面等离激元对ZnO光致发光增强的研究

刘姿, 张恒, 吴昊, 刘昌

Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon

Liu Zi, Zhang Heng, Wu Hao, Liu Chang
PDF
HTML
导出引用
  • 基于聚苯乙烯球自组装法, 在P型氮化镓(P-GaN)衬底上制备了有序致密的掩模板; 采用热蒸发法在该模板上沉积金属Al薄膜, 通过甲苯溶液去除聚苯乙烯球, 得到了金属Al纳米颗粒阵列; 采用原子层沉积法, 在Al纳米颗粒阵列表面依次沉积氧化铝(Al2O3)和氧化锌(ZnO). 通过测试Al纳米颗粒阵列的消光谱以及ZnO薄膜的光致发光谱, 研究了Al纳米颗粒表面等离激元与ZnO薄膜激子之间的耦合效应. 实验结果表明: 引入Al纳米颗粒后, 在约380 nm位置附近的ZnO近带边发光峰积分强度增强了1.91倍. 对Al纳米颗粒表面等离激元增强ZnO光致发光的机理进行探讨.
    During the past few decades, surface plasmons (SPs) have become a research hotspot. The SPs are the collective oscillations of free electrons at the interface between metal and dielectric surrounding. Localized surface plasmon resonance (LSPR) for metal nanoparticles (NPs) has a wide application in the light emission enhancement by the selective photon absorption and by increasing local electromagnetic field. Nowadays, many achievements of SP-enhanced-emissions are applied to light emitting diodes. With the advantages of the direct wide band gap (3.37 eV) and large exciton binding energy (60 meV), zinc oxide (ZnO), which is considered as a potential material, has a wide range of applications, especially in ultraviolet (UV) optoelectronic devices. However, the low photoluminescence efficiency of ZnO limits the commercial applications of ZnO-devices. The relevant research shows that the selection of different metal NPs, such as platinum (Pt), aluminum (Al), argentum (Ag), aurum (Au), is one of the approaches to improving the UV emission from ZnO. In this study, two-dimensional arrays of Al NPs are used to improve the LSPR photoluminescence efficiency from ZnO grown by the atomic layer deposition (ALD). The two-dimensional arrays of Al NPs are fabricated on the surfaces of p-type Gallium nitride (GaN) substrates by colloid lithography. With the air-liquid interface self-assembly, the monolayer masks for colloid lithography are obtained on the substrates of p-type GaN. Then, after a 50-nm Al layer is deposited by thermal evaporation, the Al NPs’ arrays are gained by being dipped into toluene and extra sonication to remove the masks. Finally, 15 nm Al2O3 and 200 nm ZnO films are deposited in sequence by ALD at a temperature of 125 ℃. The extinction spectra of Al NPs’ arrays are acquired by an ultraviolet-visible spectrophotometer. The results of the extinction spectra suggest that the radiative recombination rate is increased by the resonance coupling between the localized surface plasmons (LSP) of the Al NPs arrays and the excitons of the ZnO. A 1.91-fold enhancement of photoluminescence integral intensity in band-edge emission is measured because of the Al NP arrays coupled with ZnO. The result means that the LSP of the Al NPs’ arrays can increase the UV-emission of the ZnO. Therefore, this cost-effective and facile approach can be used in high-performance optoelectronic devices.
      通信作者: 吴昊, h.wu@whu.edu.cn ; 刘昌, chang.liu@whu.edu.cn
    • 基金项目: 国家重点研究与发展计划(批准号: 2017YFA0205802)、国家自然科学基金(批准号: 11574235, 11875212)和江苏省自然科学研究基金(批准号: BK20151250)资助的课题.
      Corresponding author: Wu Hao, h.wu@whu.edu.cn ; Liu Chang, chang.liu@whu.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan (MOST), China (Grant No. 2017YFA0205802), the National Natural Science Foundation of China (Grant Nos. 11574235, 11875212), and the Funding of Jiangsu Province, China (Grant No. BK20151250).
    [1]

    You D T, Xu C X, Qin F F, Zhu Z, Manohari A G, Xu W, Zhao J, Liu W 2018 Sci. Bull. 63 38Google Scholar

    [2]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. 26 047703Google Scholar

    [3]

    李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕, 2016 物理学报 65 118104Google Scholar

    Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F, Zou D S 2016 cta Phys. Sin. 65 118104Google Scholar

    [4]

    任艳东, 郝淑娟, 邱忠阳 2013 物理学报 62 147302Google Scholar

    Ren Y D, Hao S J, Qiu Z Y 2013 Acta Phys. Sin. 62 147302Google Scholar

    [5]

    邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 物理学报 60 087301Google Scholar

    Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301Google Scholar

    [6]

    Yang L, Liu W, Xu H, Ma J, Zhang C, Liu C, Wang Z, Liu Y 2017 J. Mater. Chem. C 5 3288Google Scholar

    [7]

    Feng W, Jing A, Li J, Liang G 2016 Optoe. Lett. 12 195Google Scholar

    [8]

    Zhang S G, Zhang X W, Yin Z G, Wang J X, Si F T, Gao H L, Dong J J, Liu X 2012 J. Appl. Phys. 112 013112Google Scholar

    [9]

    Liu W Z, Xu H Y, Zhang L X, Zhang C, Ma J G, Wang J N, Liu Y C 2012 Appl. Phys. Lett. 101 142101Google Scholar

    [10]

    Zhang S G, Zhang X W, Yin Z G, Wang J X, Dong J J, Gao H L, Si F T, Sun S S, Tao Y 2011 Appl. Phys. Lett. 99 181116Google Scholar

    [11]

    Chan G H, Zhao J, Schatz G C, van Duyne R P 2008 J. Phys. Chem. C 112 13958Google Scholar

    [12]

    Wu K W, Lu Y F, He H P, Huang J Y, Zhao B H, Ye Z Z 2011 J. Appl. Phys. 110 601

    [13]

    Lin Y 2013 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)

    [14]

    Kao C C, Su Y K, Lin C L, Chen J J 2010 IEEE Photonic. Tech. L. 22 984Google Scholar

    [15]

    Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102Google Scholar

    [16]

    刘斌斌, 肖湘衡, 吴伟, 任峰, 蒋昌忠 2011 武汉大学学报: 理学版 57 205

    Liu B B, Xiao X H, Wu W, Ren F, Jiang C Z 2011 J. Wuhan Univ.: Science Edition 57 205

    [17]

    Zheng C 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [18]

    陈超 2015 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)

    [19]

    Zhang H, Su X, Wu H, Liu C 2019 J. Alloy. Compd. 772 460Google Scholar

    [20]

    马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139Google Scholar

    Ma Y, Wang W L, Liao K J, Lü J W, Sun X L 2004 J. Funct. Mater. 35 139Google Scholar

    [21]

    Zou S L, Janel N, Schatz G C 2004 J. Chem. Phys. 120 10871Google Scholar

    [22]

    Shen Y Z, Swiatkiewicz J, Lin T C, Markowicz P, Prasad P N 2002 J. Phys. Chem. B 106 4040Google Scholar

    [23]

    Zhang J Y, Ye Y H, Wang X Y, Rochon P, Xiao M 2005 Phys. Rev. B 72 201306Google Scholar

    [24]

    Komarala V K, Rakovich Y P, Bradley A L, Byrne S J, Gun’ko Y K, Gaponik N, Eychmüller A 2006 Appl. Phys. Lett. 89 253118Google Scholar

    [25]

    Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S 1999 Phys. Rev. B 60 11564Google Scholar

    [26]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T 1998 Appl. Phys. Lett. 73 1038Google Scholar

    [27]

    张丽, 蒋昌忠, 任峰, 石瑛, 付强 2004 功能材料 35 160Google Scholar

    Zhang L, Jiang C Z, Ren F, Shi Y, Fu Q 2004 J. Funct. Mater. 35 160Google Scholar

  • 图 1  (a) PS球阵列SEM图; (b) Al纳米颗粒阵列SEM图

    Fig. 1.  (a) The SEM image of PS arrays; (b) the SEM image of Al nanoparticle arrays.

    图 2  引入Al纳米颗粒前后ZnO的PL光谱

    Fig. 2.  Comparison of ZnO photoluminescence spectra with and without Al nanoparticles

    图 3  Al纳米颗粒的吸收谱

    Fig. 3.  The absorption spectrum of Al nanoparticles.

    图 4  (a)无Al纳米颗粒ZnO薄膜的AFM图; (b)有Al纳米颗粒ZnO薄膜的AFM图

    Fig. 4.  The AFM image of ZnO without Al nanoparticls; (b) the AFM image of ZnO with Al nanoparticls.

  • [1]

    You D T, Xu C X, Qin F F, Zhu Z, Manohari A G, Xu W, Zhao J, Liu W 2018 Sci. Bull. 63 38Google Scholar

    [2]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. 26 047703Google Scholar

    [3]

    李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕, 2016 物理学报 65 118104Google Scholar

    Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F, Zou D S 2016 cta Phys. Sin. 65 118104Google Scholar

    [4]

    任艳东, 郝淑娟, 邱忠阳 2013 物理学报 62 147302Google Scholar

    Ren Y D, Hao S J, Qiu Z Y 2013 Acta Phys. Sin. 62 147302Google Scholar

    [5]

    邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 物理学报 60 087301Google Scholar

    Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301Google Scholar

    [6]

    Yang L, Liu W, Xu H, Ma J, Zhang C, Liu C, Wang Z, Liu Y 2017 J. Mater. Chem. C 5 3288Google Scholar

    [7]

    Feng W, Jing A, Li J, Liang G 2016 Optoe. Lett. 12 195Google Scholar

    [8]

    Zhang S G, Zhang X W, Yin Z G, Wang J X, Si F T, Gao H L, Dong J J, Liu X 2012 J. Appl. Phys. 112 013112Google Scholar

    [9]

    Liu W Z, Xu H Y, Zhang L X, Zhang C, Ma J G, Wang J N, Liu Y C 2012 Appl. Phys. Lett. 101 142101Google Scholar

    [10]

    Zhang S G, Zhang X W, Yin Z G, Wang J X, Dong J J, Gao H L, Si F T, Sun S S, Tao Y 2011 Appl. Phys. Lett. 99 181116Google Scholar

    [11]

    Chan G H, Zhao J, Schatz G C, van Duyne R P 2008 J. Phys. Chem. C 112 13958Google Scholar

    [12]

    Wu K W, Lu Y F, He H P, Huang J Y, Zhao B H, Ye Z Z 2011 J. Appl. Phys. 110 601

    [13]

    Lin Y 2013 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)

    [14]

    Kao C C, Su Y K, Lin C L, Chen J J 2010 IEEE Photonic. Tech. L. 22 984Google Scholar

    [15]

    Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102Google Scholar

    [16]

    刘斌斌, 肖湘衡, 吴伟, 任峰, 蒋昌忠 2011 武汉大学学报: 理学版 57 205

    Liu B B, Xiao X H, Wu W, Ren F, Jiang C Z 2011 J. Wuhan Univ.: Science Edition 57 205

    [17]

    Zheng C 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [18]

    陈超 2015 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)

    [19]

    Zhang H, Su X, Wu H, Liu C 2019 J. Alloy. Compd. 772 460Google Scholar

    [20]

    马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139Google Scholar

    Ma Y, Wang W L, Liao K J, Lü J W, Sun X L 2004 J. Funct. Mater. 35 139Google Scholar

    [21]

    Zou S L, Janel N, Schatz G C 2004 J. Chem. Phys. 120 10871Google Scholar

    [22]

    Shen Y Z, Swiatkiewicz J, Lin T C, Markowicz P, Prasad P N 2002 J. Phys. Chem. B 106 4040Google Scholar

    [23]

    Zhang J Y, Ye Y H, Wang X Y, Rochon P, Xiao M 2005 Phys. Rev. B 72 201306Google Scholar

    [24]

    Komarala V K, Rakovich Y P, Bradley A L, Byrne S J, Gun’ko Y K, Gaponik N, Eychmüller A 2006 Appl. Phys. Lett. 89 253118Google Scholar

    [25]

    Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S 1999 Phys. Rev. B 60 11564Google Scholar

    [26]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T 1998 Appl. Phys. Lett. 73 1038Google Scholar

    [27]

    张丽, 蒋昌忠, 任峰, 石瑛, 付强 2004 功能材料 35 160Google Scholar

    Zhang L, Jiang C Z, Ren F, Shi Y, Fu Q 2004 J. Funct. Mater. 35 160Google Scholar

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [3] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, 2021, 70(22): 226101. doi: 10.7498/aps.70.20211152
    [4] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [5] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [6] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [7] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [8] 李白, 吴太权, 汪辰超, 江影. Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构. 物理学报, 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [9] 毛延哲, 刘延霞, 李健, 李晖, 潘孝军, 谢二庆. Ti/TiO2包覆ZnO:Tb纳米纤维的光学性质. 物理学报, 2014, 63(18): 186801. doi: 10.7498/aps.63.186801
    [10] 叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷. 自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究. 物理学报, 2014, 63(8): 087802. doi: 10.7498/aps.63.087802
    [11] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [12] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰. 原子层沉积Al2O3/n-GaN MOS结构的电容特性. 物理学报, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [13] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构. 物理学报, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [14] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [15] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装. 物理学报, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [16] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [18] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [19] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [20] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
计量
  • 文章访问数:  9791
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-13
  • 修回日期:  2019-03-13
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回