搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自组装CuS多孔级次纳米花及其吸附自沉积特性研究

赵先拓 徐林林 田悦 焦安欣 马慧 张梦雅 崔清强

引用本文:
Citation:

自组装CuS多孔级次纳米花及其吸附自沉积特性研究

赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强

Self-assembled CuS porous grade sub-nanoflowers as efficient nano-adsorbents for adsorption/self-deposition characteristics research

Zhao Xian-Tuo, Xu Lin-Lin, Tian Yue, Jiao An-Xin, Ma Hui, Zhang Meng-Ya, Cui Qing-Qiang
PDF
HTML
导出引用
  • 采用纳米吸附剂实现对有机染料的处理在污水净化领域具有很好的前景, 特别是拥有自沉积特性的纳米吸附剂可以更为有效地提高处理污水的效率. 本文利用液相结晶得到的二维纳米花瓣, 通过自组装制备的多孔花状硫化铜(CuS)级次纳米材料, 不仅实现了对污水中有机污染物的高效吸附处理, 而且拥有快速自沉积特性, 本文以甲基蓝等为吸附质对其吸附自沉积特性进行了研究. 结果表明: 使用10 mg多孔花状 CuS级次纳米结构材料在30 min内对0.8 mg甲基蓝分子的吸附效率可达100%, 在3 h内即可完成自沉积, 相比于CuS微米绒球的吸附效率提高了55%, 沉积效率提高了95%; 相比于CuS微米颗粒的吸附效率提高了26%, 沉积效率提高了3.17倍. 该优异的吸附自沉积性能归结于多孔级次纳米花比微米绒球和微米颗粒有更大的比表面积, 其表面具备更大的孔隙率, 且具备更强的静电吸附能力. 本研究结果为有效地处理污水中的有机染料提供了可能的新思路.
    In recent decades, growing population and industrial development have led to releasing huge amounts of highly toxic chemical pollutants into the environment globally. Several approaches to handling the removal of contaminants from wastewater for environmental remediation, including biological, chemical, physical, and advanced oxidation processes have been employed. Among them, using nano-adsorbents as a tool for effectively removing organic contaminants represents a promising strategy in sewage purification field. More importantly, the nano-adsorbents with auto-deposition property can greatly improve the efficiency of sewage treatment. Therefore, the developing of environment friendly nano-adsorbents is thus an important issue to remove organic contaminants in water via simply adsorbing. Here in this work, porous flower-like copper sulfide (CuS) grade sub-nanomaterials are successfully fabricated by simply mixing two inorganic salts. Furthermore, the as-prepared nano-adsorbents with auto-deposition property can create a super adsorption capability for organic contaminants in wastewater. We further study the adsorption/auto-deposition characteristics of porous flower-like CuS grade sub-nanomaterials systematically by using various organic dyes (methyl blue, crystal violet, lemon yellow, sunset yellow and amaranth) as target molecules. For instance, in a typical procedure, 0.8-mg methyl blue can be removed 100% via adding 10-mg porous flower-like CuS grade sub-nanomaterials sample in 30 min. Therefore, the adsorption efficiency can be enhanced by 55% and 26% in comparison with the adsorption efficiency of CuS micro pompons and micron particles, respectively. Additionally, the porous flower-like CuS grade sub-nanomaterials can self-deposite on the bottom of the solution within 3 h after adsorption has finished, and the deposition efficiency can be improved by 95% and 3.17 times in comparison with the deposition efficiency of CuS micro pompons and micron particles, respectively. Comparing with micron particles, the unique self-depositing characteristics of porous flower-like grade sub-nanomaterials are attributed to larger specific surface area, greater porosity and stronger electrostatic adsorption capacity. Remarkably, this work provides an effective method of effectively removing various organic dyes from wastewater.
      通信作者: 崔清强, cuiqingqiang@sdu.edu.cn
    • 基金项目: 山东大学2021年实验室建设与管理研究项目(批准号: sy20213202)资助的课题
      Corresponding author: Cui Qing-Qiang, cuiqingqiang@sdu.edu.cn
    • Funds: Project supported by the 2021 Laboratory Construction and Management Research Project of Shandong University, China (Grant No. sy20213202)
    [1]

    Srivastava S, Sinha R, Roy D 2004 Aquat. Toxicol. 66 319Google Scholar

    [2]

    Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D 2019 Dyes Pigm. 170 107591Google Scholar

    [3]

    Zhang H, Chen M, Wang D M, Xu L L, Liu X D 2016 Opt. Mater. Express 6 2573Google Scholar

    [4]

    Miao X, Tang Y, Wong C W 2015 Nature 518 483

    [5]

    Ghorai S, Sarkar A, Raoufi M, Panda A B, Schönherr H, Pal S 2014 ACS Appl. Mater. Interfaces 6 4766Google Scholar

    [6]

    Wu Z, Joo H, Lee K 2005 Chem. Eng. J. 112 227Google Scholar

    [7]

    Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B 2014 ACS Appl. Mater. Interfaces 6 8845Google Scholar

    [8]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Interfaces 5 12654Google Scholar

    [9]

    Yousefi M, Villar-Rodil S, Paredes J I, Moshfegh A Z 2019 J. Alloy. Compd. 809 151783Google Scholar

    [10]

    Zhan Y, Wan X, He S, Yang Q, He Y 2018 Chem. Eng. J. 333 132Google Scholar

    [11]

    Reddy P A K, Reddy P V L, Kwon E, Kim K, Akter T, Kalagara S 2016 Environ. Int. 91 94Google Scholar

    [12]

    Verdin A, Sahraoui A L H, Durand R 2004 Int. Biodeterior. Biodegrad. 53 65Google Scholar

    [13]

    Zhang X, Zhang P Y, Wu Z, Zhang L, Zeng G M, Zhou C J 2013 Colloids Surf., A 435 85Google Scholar

    [14]

    Yagub M T, Sen T K, Afroze S, Ang H M 2014 Adv. Colloid. Interfaces Sci. 209 172Google Scholar

    [15]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Inter. 5 12654

    [16]

    Massey A T, Gusain R, Kumari S, Khatri O P 2016 Ind. Eng. Chem. Res. 55 7124Google Scholar

    [17]

    Xie Y J, Yan B, Xu H L, et al. 2014 ACS Appl. Mater. Inter. 6 8845

    [18]

    Liao W L, Ma Y Q, Chen A Y, Yang Y L 2015 Chem. Eng. J. 271 232Google Scholar

    [19]

    Song H J, You S, Jia X H, Yang J 2015 Ceram. Int. 8 23

    [20]

    Bobbitt N S, Mendonca M L, Howarth A J, et al. 2017 Chem. Soc. Rev. 46 3357Google Scholar

    [21]

    Zhao W, Wang Z H, Zhou L, Liu N Q, Wang H X 2016 Front. Mater. Sci. Chin. 10 290Google Scholar

    [22]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin 62 158104Google Scholar

    [23]

    Mazaheri H, Ghaedi M, Asfaram A, Hajati S 2016 J. Mol. Liq. 219 667Google Scholar

    [24]

    Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D 2005 Carbon 43 153Google Scholar

    [25]

    Dettlaff-Weglikowska U, Skakalova V, Graupner R, et al. 2005 J. Am. Chem. Soc. 127 5125Google Scholar

    [26]

    Tseng C H, Wang C C, Chen C Y 2006 Nanotechnology 17 5602Google Scholar

    [27]

    Nduna M K, Lewis A E, Nortier P 2014 Colloids Surf., A 441 643Google Scholar

    [28]

    Borthakur P, Boruah P K, Das M R 2021 J. Environ. Chem. Eng. 9 104635Google Scholar

    [29]

    Gqebe S, Rodriguez-Pascual M, Lewis A 2016 J. S. Afr. Inst. Min. Metall. 116 575Google Scholar

    [30]

    Zha Z B, Wang S M, Zhang S H, Qu E Z, Ke H T, Wang J R, Dai Z F 2013 Nanoscale 5 3216Google Scholar

    [31]

    Ayodhya D, Venkatesham M, Kumari A S, et al. 2016 J. Exp. Nanosci. 11 418Google Scholar

    [32]

    Wang T J, Zhang H, Xu L L, Wang X L, Chen M 2017 Opt. Mater. Express 7 3863Google Scholar

    [33]

    Fan Y, Liu P F, Huang Z Y, Jiang T W, Yao K L, Han R 2015 J. Power Sources 280 30Google Scholar

    [34]

    Velasco L F, Guillet-Nicolas R, Dobos G, Thommes M, Lodewyckx P 2016 Carbon 96 753Google Scholar

    [35]

    Gao S Y, Liu H Y, Geng K R, Wei X J 2015 Nano Energy 12 785Google Scholar

    [36]

    Eid K, Wang H J, He P, Wang K M, Ahamad T, Alshehri S M, Yamauchi Y, Wang L 2015 Nanoscale 7 16860Google Scholar

    [37]

    Wu K, Zhang Q, Sun D M, Zhu X S, Chen Y, Lu T H, Tang Y W 2015 Int. J. Hydrogen Energy 40 6530Google Scholar

    [38]

    Fu G T, Wu K, Lin J, Tang Y W, Chen Y, Zhou Y M, Lu T H 2013 J. Phys. Chem. C. 117 9826Google Scholar

    [39]

    Wang T J, Wang D M, Zhang H, Wang X L, Chen M 2017 Opt. Mater. Express 7 924Google Scholar

    [40]

    Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700Google Scholar

  • 图 1  (a), (b)多孔级次纳米花; (c), (d)微米绒球; (e), (f)微米颗粒的SEM

    Fig. 1.  (a), (b) SEM image of porous grade sub-nanoflowers; (c), (d) SEM image of micron pompon; (e), (f) SEM image of micron particles.

    图 2  (a) 多孔级次纳米花的S和Cu的能量散射谱; (b) mapping选区SEM图; (c), (d) 分别为S和Cu元素分布

    Fig. 2.  (a) Energy scattering spectra of S and Cu in porous grade sub-nanoflowers; (b) mapping selected SEM image; (c), (d) S and Cu elements mapping, respectively.

    图 3  多孔级次纳米花CuS的TEM图 (a), (b), (c) 分辨率依次增大; (d) 选区电子衍图谱

    Fig. 3.  (a), (b), (c) The typical low and enlarged TEM image of porous grade sub-nanoflowers CuS; (d) the corresponding selected area electron diffraction (SAED) pattern.

    图 4  CuS微米颗粒、微米绒球、多孔级次纳米花的XRD谱

    Fig. 4.  XRD spectra of CuS micron pompon、micron particles and porous grade sub-nanoflowers.

    图 5  级次纳米花的XPS谱 (a) Cu; (b) S

    Fig. 5.  XPS spectra of grade sub-nanoflowers: (a) Cu; (b) S.

    图 6  (a), (b), (c) 分别为多孔级次纳米花、微米颗粒、微米绒球的氮气吸脱附曲线; (d), (e), (f)为对应的孔径分布曲线

    Fig. 6.  (a), (b), (c) Nitrogen desorption curve of porous grade sub-nanoflowers, micron pompon and micron particles, respectively; (d), (e), (f) the corresponding aperture distribution curve.

    图 7  (a), (b)分别为纳米枝晶正在生长为纳米花瓣时的TEM图和SEM图; (c)硫源释放S2– 速率过快导致CuS直接团聚而未能得到纳米花瓣; (d)自组装过程因能量不足导致大量纳米片散落

    Fig. 7.  (a), (b) TEM and SEM images when nanocrystals are growing into nanocrystals, respectively; (c) the S2– release rate of sulfur source is too fast, which leads to direct aggregation of CuS and fails to obtain nanopetals; (d) a large number of nanosheets were scattered due to lack of energy during the self-assembly process.

    图 8  (a) CuS多孔级次纳米花, (b) CuS微米绒球, (c) CuS微米颗粒材料吸附MB溶液后上清液吸收谱随吸附时间的变化曲线; (d)表征三份材料对MB的吸附过程

    Fig. 8.  The varied absorption spectra of supernatant after adding (a) porous grade sub-nanoflowers, (b) micron pompon and (c) micron particle material to adsorb MB with changing adsorption time; (d) the adsorption process of MB by adding three materials, respectively.

    图 9  溶液体系的吸收谱 (a)静置1 h, (b)静置3 h. 插图为吸附体系实物照片(批注:需要把曲线的文字注释和右上角插图中的文字注释中的“微米球”改为“微米绒球”,把“微米椭球”改为“微米颗粒”)

    Fig. 9.  The absorption spectra of the solution system after standing for (a)1 h and (b)3 h; The inset is a physical photo of the adsorption system.

    图 10  (a)多孔级次纳米花, (b)微米绒球和(c)微米颗粒吸附MB染料分子后的SEM

    Fig. 10.  SEM images of (a) porous grade sub-nanoflowers, (b) micron pompon, and (c) micron particle material after adsorbing MB dye molecules.

    图 11  (a)多孔级次纳米花对结晶紫, (b)柠檬黄, (c)日落黄, (d)苋菜红的吸附过程中测试离心液的吸收谱线

    Fig. 11.  The absorption spectra of (a) crystal violet, (b) lemon yellow, (c)sunset yellow and (d)amaranth by adding porous grade sub-nanoflowers as nano-adsorbents via centrifugal treatment.

    图 12  (a)为苋菜红、日落黄、柠檬黄和结晶紫的原始吸收谱; (b), (c)分别为加入多孔级次纳米花材料静置30 min和3 h后溶液吸收谱

    Fig. 12.  (a) The original absorption spectra of amaranth, sunset yellow, lemon yellow and crystal violet; (b), (c) the absorption spectra of the solution after adding porous grade sub-nanoflowers materials for 30 min and 3 h, respectively.

    表 1  三份样品的Zeta电势

    Table 1.  Zeta potential of three samples.

    样品Zeta电势/mV
    级次纳米花–13.3
    微米绒球–2.29
    微米颗粒–1.15
    下载: 导出CSV
  • [1]

    Srivastava S, Sinha R, Roy D 2004 Aquat. Toxicol. 66 319Google Scholar

    [2]

    Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D 2019 Dyes Pigm. 170 107591Google Scholar

    [3]

    Zhang H, Chen M, Wang D M, Xu L L, Liu X D 2016 Opt. Mater. Express 6 2573Google Scholar

    [4]

    Miao X, Tang Y, Wong C W 2015 Nature 518 483

    [5]

    Ghorai S, Sarkar A, Raoufi M, Panda A B, Schönherr H, Pal S 2014 ACS Appl. Mater. Interfaces 6 4766Google Scholar

    [6]

    Wu Z, Joo H, Lee K 2005 Chem. Eng. J. 112 227Google Scholar

    [7]

    Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B 2014 ACS Appl. Mater. Interfaces 6 8845Google Scholar

    [8]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Interfaces 5 12654Google Scholar

    [9]

    Yousefi M, Villar-Rodil S, Paredes J I, Moshfegh A Z 2019 J. Alloy. Compd. 809 151783Google Scholar

    [10]

    Zhan Y, Wan X, He S, Yang Q, He Y 2018 Chem. Eng. J. 333 132Google Scholar

    [11]

    Reddy P A K, Reddy P V L, Kwon E, Kim K, Akter T, Kalagara S 2016 Environ. Int. 91 94Google Scholar

    [12]

    Verdin A, Sahraoui A L H, Durand R 2004 Int. Biodeterior. Biodegrad. 53 65Google Scholar

    [13]

    Zhang X, Zhang P Y, Wu Z, Zhang L, Zeng G M, Zhou C J 2013 Colloids Surf., A 435 85Google Scholar

    [14]

    Yagub M T, Sen T K, Afroze S, Ang H M 2014 Adv. Colloid. Interfaces Sci. 209 172Google Scholar

    [15]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Inter. 5 12654

    [16]

    Massey A T, Gusain R, Kumari S, Khatri O P 2016 Ind. Eng. Chem. Res. 55 7124Google Scholar

    [17]

    Xie Y J, Yan B, Xu H L, et al. 2014 ACS Appl. Mater. Inter. 6 8845

    [18]

    Liao W L, Ma Y Q, Chen A Y, Yang Y L 2015 Chem. Eng. J. 271 232Google Scholar

    [19]

    Song H J, You S, Jia X H, Yang J 2015 Ceram. Int. 8 23

    [20]

    Bobbitt N S, Mendonca M L, Howarth A J, et al. 2017 Chem. Soc. Rev. 46 3357Google Scholar

    [21]

    Zhao W, Wang Z H, Zhou L, Liu N Q, Wang H X 2016 Front. Mater. Sci. Chin. 10 290Google Scholar

    [22]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin 62 158104Google Scholar

    [23]

    Mazaheri H, Ghaedi M, Asfaram A, Hajati S 2016 J. Mol. Liq. 219 667Google Scholar

    [24]

    Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D 2005 Carbon 43 153Google Scholar

    [25]

    Dettlaff-Weglikowska U, Skakalova V, Graupner R, et al. 2005 J. Am. Chem. Soc. 127 5125Google Scholar

    [26]

    Tseng C H, Wang C C, Chen C Y 2006 Nanotechnology 17 5602Google Scholar

    [27]

    Nduna M K, Lewis A E, Nortier P 2014 Colloids Surf., A 441 643Google Scholar

    [28]

    Borthakur P, Boruah P K, Das M R 2021 J. Environ. Chem. Eng. 9 104635Google Scholar

    [29]

    Gqebe S, Rodriguez-Pascual M, Lewis A 2016 J. S. Afr. Inst. Min. Metall. 116 575Google Scholar

    [30]

    Zha Z B, Wang S M, Zhang S H, Qu E Z, Ke H T, Wang J R, Dai Z F 2013 Nanoscale 5 3216Google Scholar

    [31]

    Ayodhya D, Venkatesham M, Kumari A S, et al. 2016 J. Exp. Nanosci. 11 418Google Scholar

    [32]

    Wang T J, Zhang H, Xu L L, Wang X L, Chen M 2017 Opt. Mater. Express 7 3863Google Scholar

    [33]

    Fan Y, Liu P F, Huang Z Y, Jiang T W, Yao K L, Han R 2015 J. Power Sources 280 30Google Scholar

    [34]

    Velasco L F, Guillet-Nicolas R, Dobos G, Thommes M, Lodewyckx P 2016 Carbon 96 753Google Scholar

    [35]

    Gao S Y, Liu H Y, Geng K R, Wei X J 2015 Nano Energy 12 785Google Scholar

    [36]

    Eid K, Wang H J, He P, Wang K M, Ahamad T, Alshehri S M, Yamauchi Y, Wang L 2015 Nanoscale 7 16860Google Scholar

    [37]

    Wu K, Zhang Q, Sun D M, Zhu X S, Chen Y, Lu T H, Tang Y W 2015 Int. J. Hydrogen Energy 40 6530Google Scholar

    [38]

    Fu G T, Wu K, Lin J, Tang Y W, Chen Y, Zhou Y M, Lu T H 2013 J. Phys. Chem. C. 117 9826Google Scholar

    [39]

    Wang T J, Wang D M, Zhang H, Wang X L, Chen M 2017 Opt. Mater. Express 7 924Google Scholar

    [40]

    Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700Google Scholar

  • [1] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [2] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [5] 李白, 吴太权, 汪辰超, 江影. Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构. 物理学报, 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [6] 肖石燕, 梁好均. DNA及基于DNA链替换反应的分子计算. 物理学报, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [7] 张天辉, 曹镜声, 梁颖, 刘向阳. 胶体在基础物理研究中的应用. 物理学报, 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [8] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [9] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构. 物理学报, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [10] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [11] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [12] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [13] 刘青, 王鸣, 郭文华, 闫海涛, 喻平. 一种胶体光子晶体修饰的光纤. 物理学报, 2010, 59(10): 7086-7090. doi: 10.7498/aps.59.7086
    [14] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装. 物理学报, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [15] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [16] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [18] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [19] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [20] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
计量
  • 文章访问数:  6703
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-20
  • 修回日期:  2021-07-01
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回