搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性斑块化纳米粒子在溶液中的自组装

孟国庆 陈力源 郭思航 潘俊星 王英英 张进军

引用本文:
Citation:

柔性斑块化纳米粒子在溶液中的自组装

孟国庆, 陈力源, 郭思航, 潘俊星, 王英英, 张进军

Self-assembly Of Polymer Grafted Nanoparticles In Solution

MENG Guoqing, CHEN Liyuan, GUO Sihang, PAN Junxing, WANG Yingying, ZHANG Jinjun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 聚合物接枝纳米粒子的自组装在功能材料领域的应用越来越广泛。然而,目前对于不同自组装形貌结构的动态转变路径的分析仍存在不足,这将导致在实验和工业生产中无法实现进一步的精确调节和定向设计。本文通过构建聚合物接枝斑块化三分纳米颗粒的粗粒度模型,采用耗散粒子动力学(DPD)模拟方法,研究了斑块性质、接枝链的长度、比例以及接枝密度等因素对聚合物接枝柔性斑块化纳米粒子自组装行为和结构的影响。系统探讨了这些因素对柔性斑块化纳米粒子自组装结构转变的影响和调控机制,得到了枝状结构、柱状结构、双层膜结构等多种结构。研究中所获得的柔性斑块化纳米粒子的自组装结构(例如双层膜结构)为新型药物载体的设计提供了潜在的应用基础。通过精确调控体系的特定结构特征,能够实现药物的高效包载以及靶向递送功能,从而显著提升药物的生物利用度和治疗效果。
    The self-assembly of polymer grafted nanoparticles is increasingly being applied in the field of functional materials. However, there is still a lack of analysis on the dynamic transformation paths of different self-assembly morphologies, which leads to the inability to achieve further precise regulation and targeted design in experiments and industrial production. In this paper the effects of block property, grafted chain length, ratio and grafting density on the self-assembly behavior and structure of polymer grafted flexible blocky nanoparticles are investigated by dissipative particle dynamics (DPD) simulation method through the construction of coarse-grained model of polymer grafted ternary nanoparticles. The influence and regulation mechanism of these factors the self-assembly structure transformation of flexible blocky nanoparticles are systematically studied, and a variety of structures such as dendritic structure, columnar structure, and bilayer membrane are obtained. The self-assembly structure of flexible blocky nanoparticles obtained in the study (such as bilayer membrane structure) provides a potential application basis for the design of drug carriers. By precisely regulating the specific structural characteristics of the system, it is possible to achieve efficient loading of drugs and targeted delivery functions, thus significantly improving the bioavailability and effect of drugs.
  • [1]

    Hoheisel T N, Hur K Wiesner U B 2015Progress in Polymer Science 40 3

    [2]

    MaiY Y, Eisenberg A 2012Accounts of Chemical Research 45 1657

    [3]

    Yu L X Z,Shi R,Qian H J,Lu Z Y 2019Physical Chemistry Chemical Physics 21 1417

    [4]

    Maiorov B, Baily S A,Zhou H,Ugurlu O,Kennison J A,Dowden P C,Holesinger T G,Foltyn S R, Civale L 2009Nature Materials 8 398

    [5]

    Yang J Y,Hu Y,Wang R,Xie D Q,2017Soft Matter 13 7840

    [6]

    Li Q, Wang L Y,Lin J P,Zhang L S 2019Physical Chemistry Chemical Physics 21 2651

    [7]

    Li Q, Wang L Y,Lin J P,Xu Z W 2020The Journal of Physical Chemistry B 1244319

    [8]

    Varanakkottu S N,Anyfantakis M,Morel M,Rudiuk S,Baigl D,2016 ACS Nano 16 644

    [9]

    Zhang X, Yang H, Xiong H M, Li F Y,Xia Y Y, 2006Journal of Power Sources 1601451

    [10]

    Han X, Xue B,Cao Y,Wang W 2024Acta Phys. Sin. 73178103(in Chinese)[韩旭,薛斌,曹毅,王炜2024物理学报73178103]

    [11]

    Song J B, Zhou J J,Duan H W 2012Journal of the American Chemical Society 134 13458

    [12]

    M E Mackay,A Tuteja,P M Duxbury,C J Hawker,B V Horn 2006Science 311 1740

    [13]

    Amitabh Bansal,Hoichang Yang,Li C Z,Kilwon Cho,Brian C. Benicewicz 2005Nature Materials 4 693

    [14]

    Mackay M E, Tuteja A, Duxbury P M, Hawker C J, Van Horn B, Guan Z B,Krishnan R S 2006 Science 311 1740

    [15]

    Bansal A, Yang H, Li C Z, Cho K, Benicewicz B C, Kumar S K, Schadler L S 2005Nature Materials 4693

    [16]

    Krishnamoorti R 2007 MRS Bull 32 341

    [17]

    Wang Y Y,Chen L Y,Lu J F,Pan J X,Zhang J J 2024Langmuir 40 16595

    [18]

    Duan F L,Wang Y 2014Acta Phys. Sin. 63136102(in Chinese)[段芳莉,王源2014物理学报63136102]

    [19]

    Götz A W, Clark M A,Walker R C J 2014Journal of Computational Chemistry 35 95

    [20]

    Pecina A, Lepšík M, Řezáč J, Brynda J, Mader P, Řezáčová P,Hobza P, Fanfrlík J 2013Journal of Physical Chemistry B 11716096

    [21]

    Li H,Zhao H T,Gao K M,Xue Z J,Chen Z B,Liu H 2024Polymer International 74 152

    [22]

    Li C H,Fu X W,Zhong W H,Liu J 2019ACS Omega 410216

    [23]

    Pal S,Seidel C 2006Macromolecular Theory and Simulations 15 668

    [24]

    Zhong C L,Liu D H 2007Macromolecular Theory and Simulations 16 141

    [25]

    Song W Y,Liu H,He J W,Zhu J Z,He S Y,Liu D H,Liu H,Wang Y 2022Polymer International 71 1330

    [26]

    Li Q,Wang L Q,Lin J P,Zhang L S Physical Chemistry Chemical Physics 212651

    [27]

    Yu L X Z,Shi R,Qian H J,Lu Z Y 2019Physical Chemistry Chemical Physics 211417

    [28]

    Ma S Y,Hu Y,Wang R 2016Macromolecules 49 3535

    [29]

    Ma S Y,Hu Y,Wang R 2016Macromolecules 48 3112

    [30]

    Estridge C E,Jayaraman A 2014Journal of Chemical Physics 140 144905

    [31]

    Hou G Y,Xia X Y,Liu J, Wang W C,Dong M J,Zhang L Q 2019Journal of Physical Chemistry B 123 2157

    [32]

    Supriya Gupta,Paresh Chokshi 2020The Journal of Physical Chemistry B 124 11738

    [33]

    Moinuddin M,Tripathy M 2022Macromolecules 55 9312

    [34]

    Kishore Kumar Sriramoju,Venkat Padmanabhan 2016Macromolecular Theory and Simulations 25 582

    [35]

    Li L,Han C,Xu D,Xing J Y,Xue Y H,Liu H 2018Physical Chemistry Chemical Physics 2018400

    [36]

    Shi R,Qian H J,Lu Z Y 2017Physical Chemistry Chemical Physics 19 16524

    [37]

    Li J W,Wang J F,Yao Q,Yu K,Zhang J 2019Nanoscale 11 7221

    [38]

    Xu J,Wang Y L,He X H 2015Soft Matter 11 7433

    [39]

    Yan L T,Popp N,Ghosh S K,Böker A 2010ACS Nano 4913

    [40]

    P. J Hoogerbrugge,J. M. V. A Koelman 1992Europhysics Letters (EPL) 19 155

    [41]

    Park S,Lee J H, Cho M,Lee Y S, Chung H,Yang S 2024Polymer Testing 137 108531

    [42]

    Zhang C,Wang Z G,Wang X H,Mou X K,Li S B 2024Polymer 312 127664

    [43]

    Dong H,Zhou H,Li Y F,Li X B,Fan L L,Wen B Y,Zhao L 2024Macromolecular Theory and Simulations 34 2400078

    [44]

    Zhu B W,He Z J,Jiang G S,Ning F L 2024Polymer 290 126602

    [45]

    Ma Y B,Yuan X Q,Jiang R F,Liao J H,Yu R T,Chen Y P,Liao L S 2023Polymers 15 856

    [46]

    Wang F,Feng L K,Li Y D,Guo H X 2023Chinese Journal of Polymer Science 41 1392

    [47]

    Groot R D,Warren P B 1997The Journal of Chemical Physics 107 11

    [48]

    Hu F F,Sun Y W,Zhu Y L,Huang Y N,Li Z W,Sun Z Y 2019Journal-article 11 17350

    [49]

    Li Z W,Zhu Y L,Lu Z Y,Sun Z Y 2016Soft matter 12741

    [50]

    Zhu Y L,Pan D,Li Z W,Liu H,Qian H J,Zhao Y,Lu Z Y,Sun Z Y 2018Molecular Physics 1161065

    [51]

    Zhu Y L,Liu H,Li Z W,Qian H J,Milano G,Lu Z Y 2013Journal of computational chemistry 242197

    [52]

    Wang Y H,Zhou Q Z,Zhu Y L,Fu C L,Huang Y N,Li Z W,Sun Z Y 2019Chemical journal of chinese universities 40 1037(in Chinese)[王艳辉,邹庆智,朱有亮,付翠柳,黄以能,李占伟,孙昭艳2019高等学校化学学报40 1037]

  • [1] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, doi: 10.7498/aps.72.20222207
    [2] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, doi: 10.7498/aps.70.20201437
    [3] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, doi: 10.7498/aps.70.20211152
    [4] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, doi: 10.7498/aps.68.20190062
    [5] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, doi: 10.7498/aps.66.026301
    [6] 肖石燕, 梁好均. DNA及基于DNA链替换反应的分子计算. 物理学报, doi: 10.7498/aps.65.178106
    [7] 李白, 吴太权, 汪辰超, 江影. Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构. 物理学报, doi: 10.7498/aps.65.216301
    [8] 张天辉, 曹镜声, 梁颖, 刘向阳. 胶体在基础物理研究中的应用. 物理学报, doi: 10.7498/aps.65.176401
    [9] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, doi: 10.7498/aps.63.116801
    [10] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构. 物理学报, doi: 10.7498/aps.62.186301
    [11] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, doi: 10.7498/aps.61.027802
    [12] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, doi: 10.7498/aps.61.138101
    [13] 刘青, 王鸣, 郭文华, 闫海涛, 喻平. 一种胶体光子晶体修饰的光纤. 物理学报, doi: 10.7498/aps.59.7086
    [14] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装. 物理学报, doi: 10.7498/aps.58.6122
    [15] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, doi: 10.7498/aps.56.3017
    [16] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, doi: 10.7498/aps.56.1831
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, doi: 10.7498/aps.54.1726
    [18] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, doi: 10.7498/aps.54.302
    [19] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, doi: 10.7498/aps.52.3114
    [20] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, doi: 10.7498/aps.52.483
计量
  • 文章访问数:  53
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回