搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微量Mg及热处理对Al-7Si合金组织和性能的影响

王博 江鸿翔 张丽丽 何杰

引用本文:
Citation:

微量Mg及热处理对Al-7Si合金组织和性能的影响

王博, 江鸿翔, 张丽丽, 何杰

Effect of trace Mg and heat treatment on microstructure and properties of Al-7Si alloy

WANG Bo, JIANG Hongxiang, ZHANG Lili, HE Jie
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着电子通讯等行业的快速发展,对高导热铸造铝合金材料性能要求日益增加。本文以在电子通讯等行业广泛使用的Al-7Si( wt%,下同)铸造铝合金为对象,系统分析了热处理工艺制度以及少量的Mg元素添加对Al-7Si系合金微观组织及性能的影响。结果表明:固溶后在300℃下进行保温热处理有利于共晶Si的球化,并减小溶质原子在铝基体中的固溶度,从而导致Al-7Si合金导热性能的提升及硬度的降低;在Al-7Si合金中添加微量Mg( 0.4%)后进行三级热处理(固溶处理+300℃热处理+180℃热处理)不仅有助于共晶Si的球化,而且能促使纳米尺度( Mg,Si)强化相的析出以及基体中固溶的Mg、Si元素含量的降低,从而同时提高合金的力学性能和导热性能。经历三级热处理的Al-7Si-0.4Mg合金热导率和显微硬度可达189 W/(m·K)和73.5 HV,相较于铸态Al-Si合金分别提升了11.2%和62.6%。
    Al-Si alloys have been widely used in automotive, aerospace, electronics and communication industries due to their excellent castability, low thermal expansion, and good wear and corrosion resistance. However, the presence of coarse eutectic Si often results in relatively low thermal conductivity. With the rapid development of the electronics and communication industries, the demand for thermal conductivity and mechanical properties of materials is increasing. In this study, the effects of heat treatment and minor Mg addition on the microstructure, mechanical properties, and thermal conductivity of Al-7Si alloys were systematically investigated.
    The results indicate that heat treatment at 300℃ after solution treatment promotes the spheroidization of eutectic Si and reduces the solid solubility of solute atoms in the aluminum matrix, thereby enhancing the thermal conductivity and reducing the hardness of the Al-7Si alloy. The three-step heat treatment process (solution treatment + 300℃ treatment + 180℃ treatment) not only facilitates the spheroidization of eutectic Si, but also induces the precipitation of nanoscale (Mg, Si) strengthening phases and further decreases the solid solubility of solute elements in the Al-7Si alloy with 0.4%Mg addition. After the three-step heat treatment, the thermal conductivity and microhardness of the Al-7Si-0.4Mg alloy reach to 189 W/(m·K) and 73.5 HV, respectively. Compared to the as-cast Al-7Si alloy, they are increased by 11.2% and 62.6% respectively.
    According to the Wiedemann-Franz law and the Matthiessen-Fleming rule, the primary factors influencing the thermal conductivity of alloys are solute atoms in solid solution and secondary phases. In this study, a three-step heat treatment process was used to transform the plate-like eutectic silicon in the Al-7Si-0.4Mg alloy into fine spherical particles. Additionally, micrometer-sized silicon particles and nanoscale (Mg, Si) precipitates were induced within the alloy matrix. This microstructural modification simultaneously enhanced both the thermal conductivity and mechanical properties of the alloy. Our work is expected to inspire the design of Al-Si alloy with high strength and high conductivity.
  • [1]

    Liu J A, Xie S S 2004 Application and technical development of aluminum alloy materials (Beijing: Metallurgical Industry Press) p139(in Chinese) [刘静安,谢水生2004铝合金材料的应用与技术开发(北京:冶金工业出版社)第139页]

    [2]

    Zhang J X, Zhang M J, Li H F, Gu H Z, Chen D, Zhang C H, Tian Y F, Wang E J, Mu Q N 2024 J. Mater. Sci. Technol. 17648

    [3]

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 561188(in Chinese) [高学鹏,李新涛,郄喜望,吴亚萍,李喜孟,李廷举2007物理学报561188]

    [4]

    Zhao Z Y, Li D X, Yan X R, Chen Y, Jia Z, Zhang D Q, Han M X, Wang X, Liu G L, Liu X F, Liu S D 2024 J. Mater. Sci. Technol. 18944

    [5]

    Zhang R Y, Li J C,Sha J H, Li J K 2024 T. Mater. Heat Treat. 451 (in Chinese) [张瑞英,李继承,沙君浩,李家康2024材料热处理学报4501]

    [6]

    Gan J Q, Huang Y J, Du J, Wen C, Liu J 2020 Mater. Res. Express 7086501

    [7]

    Zhang L L, Ji Z W, Zhao J Z, He J, Jiang H X 2023 Acta Metall. Sin. 5911(in Chinese) [张丽丽,吉宗威,赵九洲,何杰,江鸿翔2023金属学报5911]

    [8]

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Metall. Sin. 571 (in Chinese) [郑秋菊,叶中飞,江鸿翔,卢明,张丽丽,赵九洲2021金属学报571]

    [9]

    Zheng Q J, Zhang L L, Jiang H X, Zhao J Z, He J 2020 J. Mater. Sci. Technol. 47142

    [10]

    Qi Z Y, Wang B, Jiang H X, Zhang L L, He J 2024 Acta Phys. Sin. 73076401(in Chinese) [戚忠乙,王博,江鸿翔,张丽丽,何杰2024物理学报73076401]

    [11]

    Dong X X, He L J, Li P J 2014 J. Alloy. Compd. 61220

    [12]

    Chen Z W, Lei Y M, Zhang H F. 2011 J. Alloy. Compd. 50927

    [13]

    Zhan M Y, Chen Z H, Yan H G 2008 J. Mater. Process. Technol. 202269

    [14]

    Taghavi F, Saghafian H, Kharrazi Y H K 2009 Mater. Des. 30115

    [15]

    Mao W M, Zhao W M, Cui C L, Zhong X Y 1999 Acta Metall. Sin. 35971(in Chinese) [毛卫民,赵爱民,崔成林,钟雪友1999金属学报35971]

    [16]

    Jin C K, Bolouri A, Kang C G. 2013 Metall. Mater. Trans. B 451068

    [17]

    Wang J Y, Wang B J, Huang L F. 2017 J. Mater. Sci. Technol. 331235

    [18]

    Cheng W, Liu C Y, Huang H F, Zhang L, Zhang B, Shi L 2021 Mater. Charact. 178111278

    [19]

    Torres L V, Zoqui E J 2024 Int. J. Met. 18769

    [20]

    Son H W, Lee J Y, Cho Y H, Jang J I, Kim S B, Lee J M 2023 J. Alloy. Compd. 960170982.

    [21]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 364643

    [22]

    Liu Q Y, Li Q C, Zhu P Y 1987 Mater. Sci. Technol. 665(in Chinese) [刘启阳, 李庆春,朱培钺1987金属科学与工艺6 65]

    [23]

    Wang A, Sheng Y F, Bao H 2024 Acta Phys. Sin. 73037201(in Chinese) [王奥,盛宇飞,鲍华2024物理学报73037201]

    [24]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132148

    [25]

    Wang W Y, Pan Q L, Jiang F Q, Yu Y, Lin G, Wang X D, Ye J, Pan D C, Huang Z Q, Xiang S Q, Li J, Liu B 2022 J. Alloy. Compd. 895162654

    [26]

    Zhang J Y, Peng J. 2023 J. Mater. Res. 381488

    [27]

    Raeisinia B, Poole W J, Lloyd D J 2006 Mater. Sci. Eng. A 420245

    [28]

    Chen J K, Hung H Y, Wang C F, Tang N K 2015 J. Mater. Sci. 505630

    [29]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX, March 10-12, 2019 p193

    [30]

    Li S S, Tang J L, Zeng D B 2008 Spec. Cast. Nonferrous Alloys 011704(in Chinese) [李双寿,唐靖林,曾大本2008特种铸造及有色合金011704]

    [31]

    Sauvage X, Bobruk E V, Murashkin M Y, Nasedkina Y, Enikeev N A, Valiev R Z 2015 Acta Mater. 98355

    [32]

    Li X S, Cai A H, Chen H, Zeng J J 2009 Hot Work. Technol. 38117(in Chinese) [李小松,蔡安辉,陈华,曾纪杰2009热加工工艺38117]

  • [1] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, doi: 10.7498/aps.74.20250518
    [2] 戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰. 微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响. 物理学报, doi: 10.7498/aps.73.20231939
    [3] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, doi: 10.7498/aps.66.196101
    [4] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, doi: 10.7498/aps.66.178101
    [5] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, doi: 10.7498/aps.65.196202
    [6] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, doi: 10.7498/aps.63.136801
    [7] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.236601
    [8] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, doi: 10.7498/aps.62.076202
    [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, doi: 10.7498/aps.62.036801
    [10] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, doi: 10.7498/aps.61.240701
    [11] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, doi: 10.7498/aps.61.167101
    [12] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, doi: 10.7498/aps.60.066201
    [13] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, doi: 10.7498/aps.60.086802
    [14] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, doi: 10.7498/aps.58.216
    [15] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, doi: 10.7498/aps.57.3823
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, doi: 10.7498/aps.56.6118
    [17] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变. 物理学报, doi: 10.7498/aps.55.4795
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, doi: 10.7498/aps.54.4846
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.54.1665
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  226
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回