搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能

伯乐 高小余 宁志良 王力 孙剑飞 张振江 黄永江

引用本文:
Citation:

电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能

伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江

Optimizing Microstructure and Mechanical Properties of CoCrFeNi High-Entropy Alloy Microfibers by Electric Current Treatment

BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高熵合金纤维因其优异的力学性能和稳定性,在高科技领域具有广阔的应用前景。然而,该类材料强塑性不匹配的问题制约了其进一步应用,虽然热处理可以进一步优化其力学性能,但传统热处理方法对时间和能源的消耗较高,且难以精准调控材料的组织,易导致晶粒粗化。本文采用电流处理技术调制微米级(直径~70 μm)冷拔态CoCrFeNi高熵合金纤维的性能,采用电子背散射衍射、透射电子显微镜以及同步辐射等技术探讨了电流处理过程中的热效应与非热效应对材料组织结构和力学性能的影响,建立了CoCrFeNi纤维再结晶形核和长大模型。相比于传统热处理,电流处理过程中电子风力和焦耳热效应的协同作用显著加快再结晶过程,获得更细小且均匀的晶粒,并有效降低位错密度,进而获得更优异的力学性能。电流处理可获得屈服强度400~2033 MPa的纤维,延伸率最高可达53%。本文证实,电流处理可作为优化高熵合金纤维组织结构及性能的有效手段,为高性能金属纤维的制备及工程化应用提供理论支撑和工艺指导。
    High-entropy alloy (HEA) microfibers exhibit promising prospects in microscale high-tech applications owing to their exceptional mechanical properties and stability. However, the strength-plasticity tradeoff largely hinders their further industrial applications. Heat treatment can optimize the mechanical properties of HEA microfibers. However, it should be noticed that conventional heat treatment (CHT) faces challenges in precisely regulating microstructures within short durations while being prone to grain coarsening that compromises performance. This study employs an electric current treatment (ECT) technique to finely modulate the properties of cold-drawn CoCrFeNi high-entropy alloy microfibers at the microscale (~70 μm diameter), systematically investigating the effects of thermal and athermal effects during ECT on microstructure and mechanical properties via electron back scatter diffraction, transmission electron microscopy, and synchrotron radiation. A recrystallization, nucleation, and growth model for HEA microfibers is established. Compared to CHT, the synergistic effects of electron wind force and Joule heating during ECT significantly accelerate recrystallization kinetics, yielding finer and more homogeneous grains with a great decrease in dislocation density, and finally lead to better mechanical properties. The ECT-processed HEA microfibers achieve a yield strength ranging from 400 to 2033 MPa and a tensile elongation reaching 53%, which are markedly higher than those of CHT samples. This work demonstrates that ECT is effective for optimizing the microstructure and properties of HEA microfibers. Meanwhile, the results obtained here can provide both a theoretical foundation and technical guidance for the fabrication of high-performance metallic microfibers.
  • [1]

    Chen J X, Xu B, Dai L H, Chen Y 2024 Chin. Sci. Bull. 69 3154 (in Chinese) [陈金玺, 徐彬, 戴兰宏, 陈艳 2024 科学通报 69 3154]

    [2]

    Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sinica 74 199 (in Chinese) [高裕昆, 赵洁, 周晶晶, 周静 2025 物理学报 74 199]

    [3]

    Zhang Y, Wu K, Shen S, Zhang Q, Cao W, Liu S 2023 J. Micromech. Microeng. 33 025002

    [4]

    You J M, Kim H, Kim J, Kwon D-S 2021 IEEE Rob. Autom. Lett. 6 7357

    [5]

    Abbas M, Eom H S, Byun J Y, Shin D, Kim S H 2023 J. Cleaner Prod. 418 138044

    [6]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471

    [7]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295

    [8]

    Tong Y, Chen D, Han B, Wang J, Feng R, Yang T, Zhao C, Zhao Y L, Guo W, Shimizu Y, Liu C T, Liaw P K, Inoue K, Nagai Y, Hu A, Kai J J 2019 Acta Mater. 165 228

    [9]

    Wang K Y, Cheng Z J, Liu C Y, Yu H P, Ning Z L, Ramasamy P, Eckert J, Sun J F, Huang Y J, Zhang Y M, Ngan A H W 2025 Int. J. Plast. 189 104321

    [10]

    Wang K Y, Cheng Z J, Ning Z L, Yu H P, Ramasamy P, Eckert J, Sun J F, Ngan A H W, Huang Y J. 2025 Rare Metals 44 1332

    [11]

    Li D, Li C, Feng T, Zhang Y, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285

    [12]

    Ma X, Chen J, Wang X, Xu Y, Xue Y 2019 J. Alloys Compd. 795 45

    [13]

    Liu J P, Chen J X, Liu T W, Li C, Chen Y, Dai L H 2020 Scr. Mater. 181 19

    [14]

    Chen J X, Chen Y, Liu J P, Liu T W, Dai L H 2021 Scr. Mater. 199 113897

    [15]

    Gao X Y, Liu J, Fu W J, Huang Y J, Ning Z L, Zhang Z, Sun J F, Chen W 2023 Mater. Des. 233 112250

    [16]

    Zhou S, Dai C, Hou H, Lu Y, Liaw P K, Zhang Y 2023 Scr. Mater 226 115234

    [17]

    Deng L, Li R, Luo J, Li S, Xie X, Wu S, Zhang W, Liaw P K, Korznikova E A, Zhang Y 2024 Int. J. Plast. 175 103929

    [18]

    Liu X, Wu Y, Zheng B, Bai R, Gao L, Dong Z, Song C, Yu Y, Gao P, Hui X 2024 Small 20 2403371

    [19]

    Yan K, Sun J, Bai J, Liu H, Huang X, Jin Z, Wu Y 2019 Mater. Sci. Eng., A 739 513

    [20]

    Bo L, Gao X Y, Song W J, Ning Z L, Sun J F, Ngan A H W, Huang Y J 2025 Int. J. Plast. 188 104307

    [21]

    Kustra P, Milenin A, Byrska-Wójcik D, Grydin O, Schaper M 2017 J. Mater. Process. Technol. 247 234

    [22]

    Lu Z C, Jiang F C, Hou H L, Liu Y, Cheng Y J, Guo C H 2015 J. Plast. Eng. 22 117 (in Chinese) [陆子川, 姜风春, 侯红亮, 刘郢, 程玉洁, 果春焕 2015 塑性工程学报 22 117]

    [23]

    Jeong K, Jin S W, Kang S G, Park J W, Jeong H J, Hong S T, Cho S H, Kim M J, Han H N 2022 Acta Mater. 232 117925

    [24]

    Wu Z, Xu X, Zhao Y, Yan X, Zhou Y, Wei L, Yu Y 2023 Mater. Sci. Eng., A 863 144536

    [25]

    Li M, Shen Y, Luo K, An Q, Gao P, Xiao P, Zou Y 2023 Nat. Mater. 22 958

    [26]

    Gao X, Liu J, Bo L, Chen W, Sun J, Ning Z, Ngan W, Huang Y 2024 Acta Mater. 277 120203

    [27]

    Liu Y, Ren J, Guan S, Li C, Zhang Y, Muskeri S, Liu Z, Yu D, Chen Y, An K, Cao Y, Liu W, Zhu Y, Chen W, Mukherjee S, Zhu T, Chen W 2023 Acta Mater. 250 118884

    [28]

    HajyAkbary F, Sietsma J, Bottger A J, Santofimia M J 2015 Mater. Sci. Eng., A 639 208

    [29]

    Li Y Z, Huang M X 2020 Acta Metall. Sinica 56 487 (in Chinese) [李亦庄, 黄明欣 2020 金属学报 56 487]

    [30]

    Yang B, Motz C, Rester M, Dehm G 2012 Philos. Mag. 92 3243

    [31]

    Peng S Y, Tian Y Z, Ni Z Y, Lu S, Li S 2024 Int. J. Plast. 182 104129

    [32]

    Liu M, Gong W, Zheng R, Li J, Zhang Z, Gao S, Ma C, Tsuji N 2022 Acta Mater. 226 117629

    [33]

    Ben D D, Yang H J, Dong Y A, Tian Y Z, Sun S J, Meng L X, Duan Q Q, Zhang P, Zhang Z F 2023 Mater. Charact. 195 112557

    [34]

    Qin R S, Zhou B L 1997 Chin. J. Mater. Res. 69 (in Chinese) [秦荣山, 周本濂 1997 材料研究学报 69]

    [35]

    Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X 2002 Adv. Eng. Mater. 4 697

    [36]

    Liu Y, Fan J, Zhang H, Jin W, Dong H, Xu B 2015 J. Alloys Compd. 622 229

    [37]

    Zhang X, Li H, Shao G, Gao J, Zhan M 2022 J. Alloys Compd. 898 162762

    [38]

    Li X, Zhu Q, Hong Y, Zheng H, Wang J, Wang J, Zhang Z 2022 Nat. Commun. 13 6503

    [39]

    Cao W D, Sprecher A F, Conrad H 1989 J. Phys. Sci. Instrum. E 22 1026

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20221621
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [4] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, doi: 10.7498/aps.70.20201986
    [5] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, doi: 10.7498/aps.69.20191671
    [6] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, doi: 10.7498/aps.66.146101
    [7] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, doi: 10.7498/aps.66.196101
    [8] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, doi: 10.7498/aps.65.196202
    [9] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, doi: 10.7498/aps.63.136801
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, doi: 10.7498/aps.62.076202
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, doi: 10.7498/aps.61.167101
    [14] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, doi: 10.7498/aps.60.086802
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, doi: 10.7498/aps.60.066201
    [16] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, doi: 10.7498/aps.58.216
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, doi: 10.7498/aps.56.6118
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, doi: 10.7498/aps.54.4846
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.54.1665
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  33
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-29

/

返回文章
返回