搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理计算研究Cr掺杂CuZr2的电子结构、弹性性质和硬度

王坤 徐鹤嫣 郑雄 张海丰

引用本文:
Citation:

第一性原理计算研究Cr掺杂CuZr2的电子结构、弹性性质和硬度

王坤, 徐鹤嫣, 郑雄, 张海丰

First-principles study of, electronic structure, elastic properties and hardness of Cr-doped CuZr2

WANG Kun, XU Heyan, ZHENG Xiong, ZHANG Haifeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 基于第一性原理的新型高性能合金的设计开发受到了广泛关注. 然而, 在纳观尺度上, 关于Cu-Zr合金的结构设计及其热力学性质的研究鲜有报道. 本文基于CuZr2的晶体结构特点, 采用Cr原子掺杂的方法, 通过基于密度泛函理论的第一性原理计算, 设计优化了12种Cr掺杂CuZr2结构, 发现了6种力学及动力学稳定的掺杂结构模型. 通过对CuZr2及其动力学稳定的Cr掺杂结构的电子结构、弹性性质和硬度的计算研究发现: 所有的研究对象均表现为金属性质, CuZr2对外不显示磁性. 然而, Cr原子的掺入, 增加了基体的元素种类, 除Cr原子d轨道电子带来的自旋电子差异外, 掺入的Cr原子还会破坏基体内Zr原子p和d轨道上不同自旋方向电子的对称性分布, 使设计的6种Cr掺杂CuZr2结构表现为铁磁性质, 其磁矩在0.303—5.243μB之间变化. 此外, 研究发现Cr元素可以改善CuZr2的力学性质. 当采用Cr原子替代基体内Zr原子时, 可以提高材料的弹性模量和硬度, 而采用Cr原子替代基体内Cu原子时, 由于硬度的降低, 则可以改善材料的加工性能. 本文数据集可在科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00122中访问获取.
    In recent years, the design and development of new high-performance alloys based on first principles have received extensive attention. However, there are few reports on the structural design and thermodynamic properties of Cu-Zr alloys at nanoscale. In this work, based on the crystal structure characteristics of CuZr2, 12 kinds of Cr-doped CuZr2 structures are designed and optimized by the method of Cr atom doping through the first-principle calculation based on the density functional theory, and 6 kinds of mechanically and dynamically stable doped structure models are found. By calculating the electronic structure, elastic properties and hardness of the CuZr2 and its dynamically stable Cr-doped structure, it is found that the studied objects have all energy bands that pass through the Fermi energy level and are metallic. The main contributors to the metallic properties of the CuZr2 are the p and d orbital electrons of Zr, while the main contributors to the metallic properties of the 6 dynamically stable Cr-doped CuZr2 structures are the p and d orbital electrons of Cr and Zr. Meanwhile, CuZr2 has symmetrically distributed spin electrons, which do not show magnetism externally. However, the doping of Cr atoms increases the elemental species of the matrix. In addition to the difference of spin electrons brought by the d-orbital electrons of Cr atoms, the doped Cr atoms destroy the symmetrical distribution of electrons with different spin directions in the p- and d-orbitals of Zr atoms in the matrix, so that the designed 6 dynamically stable Cr-doped CuZr2 structures exhibit ferromagnetic properties with magnetic moments ranging from 0.303 to 5.243μB. In addition, it is found that Cr atoms can improve the mechanical properties of CuZr2. When the Cr atom is used to replace the Zr atom in the matrix, the elastic modulus and hardness of the material can be improved, and when the Cr atom is used to replace the Cu atom in the matrix, the machining properties of the material can be improved due to the reduction of hardness. The datasets presented in this work, including the band structure, density of states, and phonon dispersion frequency, are available from https://www.doi.org/10.57760/sciencedb.j00213.00122.
  • 图 1  计算参数收敛性测试结果 (a) 截断能Ecut的测试结果; (b) k点网格的测试结果

    Fig. 1.  Convergence test results of the calculation parameters: (a) Energy cutoff; (b) k-point mesh.

    图 2  设计的12种Cr掺杂CuZr2的晶体结构模型 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2

    Fig. 2.  Structural models of 12 Cr-doped CuZr2: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2.

    图 3  DFPT方法计算得到的CuZr2的声子谱图

    Fig. 3.  Phonon spectra of CuZr2 calculated by the DFPT method.

    图 4  DFPT方法计算得到的12种Cr掺杂CuZr2的声子谱图 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2

    Fig. 4.  Phonon spectra of 12 Cr-doped CuZr2 calculated by the DFPT method: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2.

    图 5  CuZr2晶体的电子结构 (a) 能带结构; (b) 态密度

    Fig. 5.  Electronic structure of CuZr2 crystal: (a) Energy band structure; (b) density of states.

    图 6  动力学稳定的Cu-Zr-Cr掺杂体系的能带结构 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1

    Fig. 6.  Band structure of dynamically stabilized Cu-Zr-Cr doped structures: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1.

    图 7  动力学稳定的Cu-Zr-Cr掺杂体系的态密度 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1

    Fig. 7.  Density of states of dynamically stabilized Cu-Zr-Cr doped structures: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1.

    图 8  计算得到的7种材料的德拜温度及维氏硬度

    Fig. 8.  Calculation results of Debye temperature and Vickers hardness of 7 materials.

    表 1  CuZr2的晶体结构信息

    Table 1.  Crystal structure information of CuZr2 alloy.

    CuZr2 空间群 Tetragonal-I4/mmm
    晶格常数 实验值
    a = b = 3.2204 Å; c = 11.1832 Å
    α = β = γ = 90°
    原子数 Cu 2
    Zr 4
    Wyckoff
    占位
    x y z
    Cu(2a) 0 0 0
    Zr(4e) 0 0 0.346
    下载: 导出CSV

    表 2  CuZr2及其设计的12种Cr掺杂结构的晶格信息

    Table 2.  Lattice information of CuZr2 and its designed 12 Cr-doped structures.

    化合物空间群晶格常数
    CuZr2Tetragonal-I4/mmma = b = 3.233 Å; c = 11.207 Å
    CuZr2[50]Tetragonal-I4/mmma = b = 3.236 Å; c = 11.204 Å
    CuZr1.5Cr0.5Tetragonal-P4mma = b = 3.215 Å; c = 10.408 Å
    CuZrCr-1Tetragonal-P4/mmma = b = 3.178 Å; c = 9.715 Å
    CuZrCr-2Tetragonal-P4/nmma = b = 2.981 Å; c = 10.504 Å
    CuZr0.5Cr1.5Tetragonal-P4mma = b = 2.932 Å; c = 9.601 Å
    Cu0.5Zr2Cr0.5Tetragonal-P4mmma = b = 3.261 Å; c = 10.931 Å
    Cu0.5Zr1.5Cr-1Tetragonal-P4mma = b = 3.279 Å; c = 9.951 Å
    Cu0.5Zr1.5Cr-2Tetragonal-P4mma = b = 3.021 Å; c = 11.243 Å
    Cu0.5ZrCr1.5-1Tetragonal-P4mmma = b = 3.244 Å; c = 9.084 Å
    Cu0.5ZrCr1.5-2Tetragonal-P4mma = b = 3.039 Å; c = 10.117 Å
    Cu0.5ZrCr1.5-3Tetragonal-P4mma = b = 2.906 Å; c = 10.901 Å
    Cu0.5Zr0.5Cr2-1Tetragonal-P4mma = b = 2.901 Å; c = 9.558 Å
    Cu0.5Zr0.5Cr2-2Tetragonal-P4mma = b = 3.051 Å; c = 8.697 Å
    下载: 导出CSV

    表 3  CuZr2及其设计的6种动力学稳定的Cu-Zr-Cr掺杂结构的弹性常数Cij、弹性模量E, BG(单位: GPa)、泊松比υ以及各向异性因子AU

    Table 3.  Elastic constants Cij, elastic modulus E, B and G (unit: GPa), Poisson’s ratio υ and elastic anisotropy factor AU of CuZr2 and its designed six dynamically stabilized Cu-Zr-Cr doped structures.

    C11C12C13C33C44C66EBGνAU
    Cu2Zr4177.8466.0390.74145.6963.5330.98120.58110.6745.730.3180.654
    Cu2Zr4[50]16974911506632121111460.319
    CuZr1.5Cr0.5169.4671.0699.28131.7058.5540.31109.35112.1140.880.3371.086
    CuZrCr-1170.1379.3987.12154.6459.3454.67129.90111.3249.750.3060.207
    Cu0.5Zr2Cr0.5161.4682.8283.20129.2245.5830.0099.19104.9636.940.3430.239
    Cu0.5Zr1.5Cr-1156.4281.4082.94143.6444.4547.59108.49105.6040.820.3290.105
    Cu0.5ZrCr1.5-1169.53115.2867.77143.1243.5289.44123.36107.2947.140.3080.860
    Cu0.5Zr0.5Cr2-1284.53116.96112.07227.277.4829.1577.29163.2327.200.4214.800
    下载: 导出CSV

    表 4  计算得到的CuZr2及其Cr掺杂结构的声速、德拜温度及维氏硬度

    Table 4.  Calculated sound velocity, Debye temperature and Vickers hardness of CuZr2 and its Cr-doped structures.

    M
    /(g·mol–1)
    ρ
    /(g·cm–3)
    nνl
    /(m·s–1)
    νt
    /(m·s–1)
    νm
    /(m·s–1)
    θD
    /K
    Hv
    /GPa
    Cu2Zr4491.986.9764960.792560.542866.83316.985.044
    CuZr1.5Cr0.5452.766.9964883.102418.772714.89308.804.042
    CuZrCr-1413.547.0065038.352666.232980.21349.555.853
    Cu0.5Zr2Cr0.5480.436.8664740.052319.932605.71288.853.614
    Cu0.5Zr1.5Cr-1441.216.8564833.712441.412737.16311.944.316
    Cu0.5ZrCr1.5-1401.996.9864936.622598.512905.58343.765.527
    Cu0.5Zr0.5Cr2-1362.777.4965161.511905.762163.55271.141.243
    下载: 导出CSV
  • [1]

    Park J, Ahn M, Yu G, Kim J, Kim S, Shin C 2024 Mater. Today Commun. 38 107821Google Scholar

    [2]

    Zhao Y, Pang T, He J, Tao X, Chen H, Ouyang Y, Du Y 2018 Calphad 61 92Google Scholar

    [3]

    Wang T, Cullinan T E, Napolitano R E 2014 Acta Mater. 62 188Google Scholar

    [4]

    Nishiyama N, Amiya K, Inoue A 2007 J. Non-Cryst. Solids 353 3615Google Scholar

    [5]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [6]

    余健, 赵峰, 杨惠雅, 刘嘉斌, 马吉恩, 方攸同 2023 浙江大学学报-科学A 24 206Google Scholar

    Yu J, Zhao F, Yang H, Liu J, Ma J, Fang Y 2023 J. Zhejiang Univ. -Sci. A 24 206Google Scholar

    [7]

    Zeng K J, Hämäläinen M 1995 J. Alloys Compd. 220 53Google Scholar

    [8]

    Liu Q, Zhang X, Ge Y, Wang J, Cui J Z 2006 Metall. Mater. Trans. A 37 3233Google Scholar

    [9]

    Wu G, Dong K, Xu Z, Xiao S, Wei W, Chen H, Li J, Huang Z, Li J, Gao G, Kang G, Tu C, Huang X 2022 Railway Eng. Sci. 30 437Google Scholar

    [10]

    Zeng K J, Hämäläinen M, Lukas H L 1994 J. Phase Equilib. 15 577Google Scholar

    [11]

    Zinkle S J 2016 Phys. Scr. T 167 014004

    [12]

    Preston S D, Bretherton I, Forty C B A 2003 Fusion Eng. Des. 66-68 441Google Scholar

    [13]

    Taubin M L, Solntseva E S, Chesnokov D A 2017 Int. J. Hydrogen Energy 42 24541Google Scholar

    [14]

    Solntceva E S, Taubin M L, Bochkov N A, Solntsev V A, Yaskolko A A 2016 Int. J. Hydrogen Energy 41 7206Google Scholar

    [15]

    Higashino S, Miyashita D, Ishimoto T, Miyoshi E, Nakano T, Tane M 2025 Addit. Manuf. 102 104720

    [16]

    Lu Y, Xie G, Wang D, Zhang S, Zheng W, Shen J, Lou L, Zhang J 2018 Mater. Sci. Eng. , A 720 69Google Scholar

    [17]

    路甬祥, 白春礼, 施尔畏, 方新, 李志刚 2009 中国至2050年先进材料科技发展路线图 (北京: 科学出版社) 第79页

    Lu Y X, Bai C L, Shi E W, Fang X, Li Z G 2009 China's Advanced Materials Science and Technology Development Roadmap to 2050 (Beijing: Science Press) p79

    [18]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd. 509 2885Google Scholar

    [19]

    Zhang D, Wang J, Dong K, Hao A 2018 Comput. Mater. Sci. 155 410Google Scholar

    [20]

    Wei X, Chen Z, Kong L, Wu J, Zhang H 2022 Materials 15 5990Google Scholar

    [21]

    Zhang W H, Halet J-F, Mori T 2023 J. Mater. Chem. A 11 24228Google Scholar

    [22]

    Caliskan S, Almessiere M A, Baykal A, Slimani Y 2023 Comput. Mater. Sci. 226 112243Google Scholar

    [23]

    Cheng Z, Peng Z, Zhong B, Liu H, Lu Z, Zhu S, Liu J 2023 Intermetallics 160 107918Google Scholar

    [24]

    Han Y, Chen J, Lin M, Zhang K, Lu H 2023 Vacuum 214 112239Google Scholar

    [25]

    Li Y, Li J, Wu W, Gong J, Song X, Wang Y, Chen Z 2023 Vacuum 215 112269Google Scholar

    [26]

    Lu Z Q, Wang F, Liu Y H 2021 Sci. Rep. 11 12720Google Scholar

    [27]

    Rao Z Y, Tung P Y, Xie R W, Wei Y, Zhang H B, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z M, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78Google Scholar

    [28]

    Das S, Chattopadhyaya S, Bhattacharjee R 2021 Mater. Today: Proc. 46 6324Google Scholar

    [29]

    Wu F, Chen H, Qiao J, Hou Y, Yan R, Yang Z 2023 Eur. Phys. J. B 96 93Google Scholar

    [30]

    Hamad B 2018 J. Electron. Mater. 47 4047Google Scholar

    [31]

    Yamaguchi K, Song Y C, Yoshida T, Itagaki K 2008 J. Alloys Compd. 452 73Google Scholar

    [32]

    Ding C, Liu Q, Sun Q, Feng L 2024 IEEJ Trans. Electr. Electron. Eng. 19 1916Google Scholar

    [33]

    Banu S L, Veerapandy V, Fjellvåg H, Vajeeston P 2023 ACS Omega 8 13799Google Scholar

    [34]

    Okamoto H 2008 J. Phase Equilib. Diffus. 29 204Google Scholar

    [35]

    Okamoto H 1997 J. Phase Equilib. 18 220Google Scholar

    [36]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [37]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [40]

    BLÖCHL P E 1994 Phys. Rev. B 50 17953Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299Google Scholar

    [43]

    Savrasov S Y 1996 Phys. Rev. B 54 16470Google Scholar

    [44]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [45]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [46]

    Allmann R, Hinek R 2007 Acta Crystallogr. Sect. A: Found. Crystallogr. 63 412Google Scholar

    [47]

    Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918Google Scholar

    [48]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [49]

    Arias D, Abriata J P 1990 J. Phase Equilib. 11 452Google Scholar

    [50]

    Du J, Wen B, Melnik R, Kawazoe Y 2014 J. Alloys Compd. 588 96Google Scholar

    [51]

    Choudhury N, Chaplot S L 2006 Phys. Rev. B 73 094304Google Scholar

    [52]

    Srinivasu K, Modak B, Ghanty T K 2018 J. Nucl. Mater. 510 360Google Scholar

    [53]

    Noordhoek M J, Besmann T M, Andersson D, Middleburgh S C, Chernatynskiy A 2016 J. Nucl. Mater. 479 216Google Scholar

    [54]

    王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹 2022 物理学报 71 227102Google Scholar

    Wang K, Qiao Y J, Zhang X H, Wang X D, Zheng T, Bai C Y, Zhang Y M, Du S Y 2022 Acta Phys. Sin. 71 227102Google Scholar

    [55]

    Wang K, Qiao Y, Zhang X, Wang X, Zhang Y, Wang P, Du S 2021 Eur. Phys. J. Plus 136 409Google Scholar

    [56]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504Google Scholar

    [57]

    蔡军, 陈国良, 方正知 1995 物理学报 44 977Google Scholar

    Cai J, Chen G L, Fang Z Z 1995 Acta Phys. Sin. 44 977Google Scholar

    [58]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [59]

    Xu J, Qiu N, Huang Q, Du S 2020 J. Nucl. Mater. 540 152358Google Scholar

    [60]

    Abrahams S C, Hsu F S L 1975 J. Chem. Phys. 63 1162Google Scholar

    [61]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

    [62]

    Teter D M 1998 MRS Bull. 23 22

    [63]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [64]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275Google Scholar

    [65]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater 33 93Google Scholar

    [66]

    Rahman M A, Mousumi K, Ali M L, Khatun R, Rahman M Z, Sahriar Hasan S, Hasan W, Rasheduzzaman M, Hasan M Z 2023 Results Phys. 44 106141Google Scholar

    [67]

    Zhang L, Jiao F, Qin W Q, Wei Q 2023 ACS Omega 8 43644Google Scholar

    [68]

    Barsoum M W, Radovic M 2011 Ann. Rev. Mater. Res. 41 195Google Scholar

  • [1] 万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常. Ag, Cu掺杂氧化石墨烯吸附NH3的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20241737
    [2] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202043
    [3] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201287
    [4] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172290
    [5] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, doi: 10.7498/aps.67.20172356
    [6] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.130501
    [7] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, doi: 10.7498/aps.66.118201
    [8] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [9] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, doi: 10.7498/aps.65.056801
    [10] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究. 物理学报, doi: 10.7498/aps.64.017101
    [11] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [12] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.64.207101
    [13] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, doi: 10.7498/aps.63.163101
    [14] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, doi: 10.7498/aps.62.047101
    [15] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.62.187102
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.037103
    [17] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, doi: 10.7498/aps.61.207103
    [18] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, doi: 10.7498/aps.58.1901
    [19] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.5624
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  447
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-04-21
  • 上网日期:  2025-04-29

/

返回文章
返回