搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe掺杂GaN光电特性的第一性原理研究

贾婉丽 周淼 王馨梅 纪卫莉

引用本文:
Citation:

Fe掺杂GaN光电特性的第一性原理研究

贾婉丽, 周淼, 王馨梅, 纪卫莉

First-principles study on the optical properties of Fe-doped GaN

Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li
PDF
导出引用
  • 基于密度泛函理论体系,计算了本征GaN材料和12.5%的Fe掺杂GaN体系的光电特性,分析了晶体结构、能带结构和电子态分布、介电函数、吸收系数、折射率、反射率、能量损失谱和消光系数,从理论上讨论了掺杂对体系光电特性的影响.计算所得理想GaN的禁带宽度为3.41 eV,Fe的重掺杂体系明显变窄,为3.06 eV,但仍为直接带隙半导体.本征GaN材料与Fe掺杂GaN体系的静态介电常数为5.74和6.20,折射率为2.39和2.48,能量损失最大值在20.02 eV和18.96 eV,最大吸收系数能量均在13.80 eV左右.计算结果为Fe掺杂GaN高压光电导开关材料及器件的进一步研究提供了有力的理论依据和实验支持.
    Using hybrid density functional theory, we investigate the structural, electronic and optical properties of pristine GaN and Fe-doped GaN with a Fe concentration of 12.5%. Specifically, we first analyze the crystal lattice constant, band structure, and density of states, respectively. Then we predict the dielectric function, absorption coefficient, refractive index, reflectivity, energy-loss spectrum and extinction coefficient. Finally, we analyze the influences of the doping of Fe element on the photoelectric property of Fe doped systems. The calculated lattice constants for perfect GaN are a=b=3.19 Å, c=5.18 Å, which are in good agreement with the experimental values. Furthermore, we find that the doping of Fe element has little effect on the structural properties of GaN. The Band gap of pristine GaN is predicted to be 3.41 eV, very close to the experimental value of 3.39 eV. The band gap of Fe doped GaN (12.5%) significantly decreases to 3.06 eV. By comparing the densities of states of the systems with and without Fe doping, it is found that Fe-3 d state is mainly responsible for the decrease of band gap. The calculated static dielectric constant of perfect GaN is 5.74, and it increases to 6.20 after incorporating the Fe element. The results about the imaginary part of dielectric function show that two equal-strength perfect GaN peaks are observed to be at 6.81 eV and 10.85 eV. The first peak is closely related to the direction transition from the valence band top to the conduction band bottom. Furthermore, it is also observed that a peak is located at 4.04 eV in the low energy, which can be understood as resulting from the electron transition inside the valence band. The optical absorption edge of the intrinsic GaN is 3.25 eV, corresponding to the transition energy. The reason why this energy is smaller than the bandgap is because the electronic band gap equals the sum of optical bandgap and exciton energy. However, the maximum absorption coefficients of these two systems both occur at 13.80 eV in energy. The refractive index for intrinsic system is 2.39, and it increases to 2.48 after doping the Fe element. It is found from the energy-loss spectrum that the maximum energy-loss is at 20.02 eV for a perfect system, while it is at 18.96 eV for a doped system. Additionally, we obtain the reliable reflectivity and excitation coefficient. In conclusion, our calculated results provide a well theoretical basis for the theoretical research on the co-doping of Fe element and other elements. The analyses on the Fe-doped GaN high-voltage photoconductive switch materials and devices also provide a powerful theoretical basis and experimental support in the future research.
      通信作者: 贾婉丽, wuli4@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575158)和陕西省教育厅科研基金(批准号:25606K082)资助的课题.
      Corresponding author: Jia Wan-Li, wuli4@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575158) and the Scientific Research Foundation of the Education Department of Shanxi, China (Grant No. 25606K082).
    [1]

    Fu X Q, Chang B K, Li S 2011 Acta Phys. Sin. 60 038503 (in Chinese)[付小倩, 常本康, 李飙 2011 物理学报 60 038503]

    [2]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 36 394

    [3]

    Zhao Y J 2006 Adv. Mater. Industry 8 55 (in Chinese)[赵亚娟 2006 先进材料工业 8 55]

    [4]

    Lee R, Wright A F, Crawford M H, Petersen G A, Han J, Biefeld R M 1999 Appl. Phys. Lett. 74 3344

    [5]

    Dridi Z, Bouhafs B, Ruterana P 2003 Semicond. Sci. Tech. 18 850

    [6]

    Yun F, Reshchikov M A, He L, King T, Morkoc H 2002 J. Appl. Phys. 92 4142

    [7]

    Kuo Y K, Lin W W 2002 Jpn. J. Appl. Phys. 41 73

    [8]

    Baur J, Maier K, Kunzer M, Kaufmann U, Schneider J, Amano H, Hiramatsu K 1994 Appl. Phys. Lett. 64 857

    [9]

    Cordier Y, Azize M, Baron N, Bougrioua Z, Chenot S, Tottereau O, Gibart P 2008 J. Cryst. Growth 310 948

    [10]

    Polyakov A Y, Smirnov N B, Govorkov A V, Pearton S J 2003 Appl. Phys. Lett. 83 3314

    [11]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Cai S J 2007 J. Cryst. Growth 309 8

    [12]

    Freitas J A, Gowda M, Tischler J G, Kim J H, Liu L, Hanser D 2008 J. Cryst. Growth 310 3968

    [13]

    Dashdorj J, Zvanut M E, Harrison J G, Udwary K, Paskova T 2012 J. Appl. Phys. 112 013712

    [14]

    Dong Y F, Li Y 2016 Chin. J. Comput. Phys. 33 490 (in Chinese)[董艳锋, 李英 2016 计算物理 33 490]

    [15]

    Lu W, Lei T M 2009 Electron. Sci. Tech. 22 55 (in Chinese)[陆稳, 雷天民 2009 电子科技 22 55]

    [16]

    Huang B R, Zhang F C, Cui H W 2016 Henan Sci. 34 16 (in Chinese)[黄保瑞, 张富春, 崔红卫 2016 河南科学 34 16]

    [17]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese)[李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报 62 017103]

    [18]

    Xing H Y, Fan G H, Zhao D G, He M, Zhang Y, Zhou T M 2008 Acta Phys. Sin. 57 6513 (in Chinese)[邢海英, 范广涵, 赵德刚, 何苗, 章勇, 周天明 2008 物理学报 57 6513]

    [19]

    Zhao Y Q, Liu B, Yu Z L, Ma J, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [20]

    Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891

    [21]

    Gorczyca I, Christensen N E, Perlin P 1991 Solid State Commun. 79 779

    [22]

    Leszcynski M, Grzegory I, Bockowski M 1993 J. Cryst. Growth 126 601

    [23]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [24]

    Cao D, Liu B, Yu H, Hu W, Cai M 2015 Eur. Phys. J. B 88 75

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [27]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [28]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [29]

    Maruska H A, Tietjen J J 1969 Appl. Phys. Lett. 15 327

    [30]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394

    [31]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [32]

    Sheng X C 2003 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) p76 (in Chinese)[沈学础 2003 半导体光谱和光学性质 (科学出版社) 第76页]

    [33]

    Pankove J I, Berkeyheiser J E, Maruska H P 1970 Solid State Commun. 8 1051

    [34]

    Choi J H, Cui P, Lan H, Zhang Z 2015 Appl. Phys. Lett. 115 066403

    [35]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327

  • [1]

    Fu X Q, Chang B K, Li S 2011 Acta Phys. Sin. 60 038503 (in Chinese)[付小倩, 常本康, 李飙 2011 物理学报 60 038503]

    [2]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 36 394

    [3]

    Zhao Y J 2006 Adv. Mater. Industry 8 55 (in Chinese)[赵亚娟 2006 先进材料工业 8 55]

    [4]

    Lee R, Wright A F, Crawford M H, Petersen G A, Han J, Biefeld R M 1999 Appl. Phys. Lett. 74 3344

    [5]

    Dridi Z, Bouhafs B, Ruterana P 2003 Semicond. Sci. Tech. 18 850

    [6]

    Yun F, Reshchikov M A, He L, King T, Morkoc H 2002 J. Appl. Phys. 92 4142

    [7]

    Kuo Y K, Lin W W 2002 Jpn. J. Appl. Phys. 41 73

    [8]

    Baur J, Maier K, Kunzer M, Kaufmann U, Schneider J, Amano H, Hiramatsu K 1994 Appl. Phys. Lett. 64 857

    [9]

    Cordier Y, Azize M, Baron N, Bougrioua Z, Chenot S, Tottereau O, Gibart P 2008 J. Cryst. Growth 310 948

    [10]

    Polyakov A Y, Smirnov N B, Govorkov A V, Pearton S J 2003 Appl. Phys. Lett. 83 3314

    [11]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Cai S J 2007 J. Cryst. Growth 309 8

    [12]

    Freitas J A, Gowda M, Tischler J G, Kim J H, Liu L, Hanser D 2008 J. Cryst. Growth 310 3968

    [13]

    Dashdorj J, Zvanut M E, Harrison J G, Udwary K, Paskova T 2012 J. Appl. Phys. 112 013712

    [14]

    Dong Y F, Li Y 2016 Chin. J. Comput. Phys. 33 490 (in Chinese)[董艳锋, 李英 2016 计算物理 33 490]

    [15]

    Lu W, Lei T M 2009 Electron. Sci. Tech. 22 55 (in Chinese)[陆稳, 雷天民 2009 电子科技 22 55]

    [16]

    Huang B R, Zhang F C, Cui H W 2016 Henan Sci. 34 16 (in Chinese)[黄保瑞, 张富春, 崔红卫 2016 河南科学 34 16]

    [17]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese)[李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报 62 017103]

    [18]

    Xing H Y, Fan G H, Zhao D G, He M, Zhang Y, Zhou T M 2008 Acta Phys. Sin. 57 6513 (in Chinese)[邢海英, 范广涵, 赵德刚, 何苗, 章勇, 周天明 2008 物理学报 57 6513]

    [19]

    Zhao Y Q, Liu B, Yu Z L, Ma J, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [20]

    Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891

    [21]

    Gorczyca I, Christensen N E, Perlin P 1991 Solid State Commun. 79 779

    [22]

    Leszcynski M, Grzegory I, Bockowski M 1993 J. Cryst. Growth 126 601

    [23]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [24]

    Cao D, Liu B, Yu H, Hu W, Cai M 2015 Eur. Phys. J. B 88 75

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [27]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [28]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [29]

    Maruska H A, Tietjen J J 1969 Appl. Phys. Lett. 15 327

    [30]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394

    [31]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [32]

    Sheng X C 2003 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) p76 (in Chinese)[沈学础 2003 半导体光谱和光学性质 (科学出版社) 第76页]

    [33]

    Pankove J I, Berkeyheiser J E, Maruska H P 1970 Solid State Commun. 8 1051

    [34]

    Choi J H, Cui P, Lan H, Zhang Z 2015 Appl. Phys. Lett. 115 066403

    [35]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327

计量
  • 文章访问数:  2476
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 修回日期:  2018-03-15
  • 刊出日期:  2019-05-20

Fe掺杂GaN光电特性的第一性原理研究

  • 1. 西安理工大学理学院, 西安 710048
  • 通信作者: 贾婉丽, wuli4@xaut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61575158)和陕西省教育厅科研基金(批准号:25606K082)资助的课题.

摘要: 基于密度泛函理论体系,计算了本征GaN材料和12.5%的Fe掺杂GaN体系的光电特性,分析了晶体结构、能带结构和电子态分布、介电函数、吸收系数、折射率、反射率、能量损失谱和消光系数,从理论上讨论了掺杂对体系光电特性的影响.计算所得理想GaN的禁带宽度为3.41 eV,Fe的重掺杂体系明显变窄,为3.06 eV,但仍为直接带隙半导体.本征GaN材料与Fe掺杂GaN体系的静态介电常数为5.74和6.20,折射率为2.39和2.48,能量损失最大值在20.02 eV和18.96 eV,最大吸收系数能量均在13.80 eV左右.计算结果为Fe掺杂GaN高压光电导开关材料及器件的进一步研究提供了有力的理论依据和实验支持.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回