搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算

张小娅 宋佳讯 王鑫豪 王金斌 钟向丽

引用本文:
Citation:

In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算

张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3

Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li
PDF
HTML
导出引用
  • h-LuFeO3是一种窄带隙铁电半导体材料, 已被证明在铁电光伏领域有较好的应用前景. 然而, 较低的极化强度使光生电子-空穴对复合率大, 限制了h-LuFeO3基铁电光伏电池效率的提高. 为改善h-LuFeO3的极化强度, 提高光吸收性质, 本文利用第一性原理计算方法研究了In原子在h-LuFeO3不同位置的掺杂形成能, 得到最稳定的掺杂位置, 比较了h-Lu1–xInxFeO3 (x = 0, 0.167, 0.333, 0.667)的带隙、光吸收性能及极化强度等性质. 计算结果表明, 随着In掺杂比例的增加, h-LuFeO3的晶格常数c/a比不断增大, 铁电极化强度得到提高. 当In∶Lu = 2∶1时, 材料杂质能级出现, Fe-O轨道杂化得到增强, 提高了h-LuFeO3的光吸收性能. 此工作证明了In掺杂是改善h-LuFeO3极化强度和光吸收系数的有效方法, 对铁电光伏性能的提高提供一种新途径.
    The h-LuFeO3 is a kind of narrow band gap hexagonal ferrite material, with a good application prospect in the field of ferroelectric photovoltaic. However, the low polarization intensity of h-LuFeO3 makes the recombination rate of photogenerated electrons and holes large, which is not conducive to the improvement of the efficiency of h-LuFeO3-based ferroelectric photovoltaic cells. In order to improve the ferroelectricity and optical absorption properties of h-LuFeO3, the first principles method is used to calculate the doping formation energy values of In atom at different positions of h-LuFeO3, and the most stable doping position is determined. The comparisons of band gap, optical absorption performance and polarization intensity among h-Lu1-xInxFeO3 (x = 0, 0.167, 0.333, 0.667) are made. With the increase of In doping, the cells of h-Lu1–xInxFeO3 stretch along the c-axis. The ratio of the lattice constant c/a increases from 1.94 at x = 0 to 2.04 at x = 0.667 when all the positions of In replace P1 position. Using the qualitative calculation of Berne effective charge, the results show that the ferroelectric polarization intensity of h-LuFeO3, h-Lu0.833In0.167FeO3, h-Lu0.667In0.333FeO3 and h-Lu0.333In0.667FeO3 along the c-axis are 3.93, 5.91, 7.92, and 11.02 μC·cm–2, respectively. Therefore, with the increase of the number of In atoms replacing Lu atoms, the lattice constant c/a ratio of h-Lu1–xInxFeO3 increases, which can improve the ferroelectric polarization strength of the material. By analyzing the density of states of h-LuFeO3 and h-Lu0.333In0.667FeO3, we can see that In doping enhances the Fe-O orbital hybridization in h-Lu0.333In0.667FeO3, and makes the optical absorption coefficient of h-Lu0.333In0.667FeO3 in the solar light range larger. In summary, In doped h-LuFeO3 is an effective method to improve its polarization intensity and optical absorption coefficient, which is of great significance for improving the performance of ferroelectric photovoltaic.
      通信作者: 钟向丽, xlzhong@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51872251, 11875229)和电子元器件可靠性物理及其应用技术重点实验室开放基金(批准号: ZHD201803)资助的课题
      Corresponding author: Zhong Xiang-Li, xlzhong@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872251, 11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201803)
    [1]

    Ji Y, Gao T, Wang Z L, Yang Y 2019 Nano Energy 64 103909Google Scholar

    [2]

    Teh Y S, Bhattacharya K 2019 J. Appl. Phys. 125 064103Google Scholar

    [3]

    Pal S, Swain A B, Biswas P P, Murali D, Pal A, Nanda B R K, Murugavel P 2018 Sci. Rep. 8 17Google Scholar

    [4]

    Butler K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838848Google Scholar

    [5]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [6]

    王婧, 吴霞, 邓朝勇, 朱孔军, 南策文 2014 无机材料学报 29 905911Google Scholar

    Wang J, Wu X, Deng C Y, Zhu K J, Nan C W 2014 J. Inorg. Mater. 29 905911Google Scholar

    [7]

    Chen Y, Chen J, Yang S, Li Y, Gao X, Zeng M, Fan Z, Gao X, Lu X, Liu J M 2018 Mater. Res. Bull. 107 456Google Scholar

    [8]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004Google Scholar

    [9]

    张兴良 2010 硕士学位论文 (武汉: 武汉理工大学)

    Zhang X L 2010 M. S. Thesis (Wuhan: Wuhan University Of Technology) (in Chinese)

    [10]

    Sinha K, Zhang Y, Jiang X, Wang H, Wang X, Zhang X, Ryan P J, Kim J W, Bowlan J, Yarotski D A, Li Y, DiChiara A D, Cheng X, Wu X, Xu X 2017 Phys. Rev. B 95 094110Google Scholar

    [11]

    Han H, Kim D, Chae S, Park J, Nam S Y, Choi M, Yong K, Kim H J, Son J, Jang H M 2018 Nanoscale 10 13261Google Scholar

    [12]

    Han H, Kim D, Chu K, Park J, Nam S Y, Heo S, Yang C, Jang H M 2018 ACS Appl. Mater. Interfaces 10 18461853Google Scholar

    [13]

    Akbashev A R, Semisalova A S, Perov N S, Kaul A R 2011 Appl. Phys. Lett. 99 122502Google Scholar

    [14]

    Wang W, Zhao J, Wang W, et al. 2013 Rev. Lett. 110 237601Google Scholar

    [15]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201Google Scholar

    [16]

    Lin L, Zhang H M, Liu M F, Shen S, Zhou S, Li D, Wang X, Yan Z B, Zhang Z D, Zhao J, Dong S, Liu J M 2016 Phys. Rev. B 93 075146Google Scholar

    [17]

    Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062Google Scholar

    [18]

    Fu Z, Nair H S, Xiao Y, Senyshyn A, Pomjakushin V, Feng E, Pomjakushin V, Su Y, Jin W T, Bruckel T 2016 Phys. Rev. B 94 125150Google Scholar

    [19]

    Clark S J, Segall M D, Pickard C J, Hasnip P, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke X 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [21]

    Holinsworth B S, Mazumdar D, Brooks C M, Mundy J A, Das H, Cherian J G, McGill S A, Fennie C J, Schlom D G, Musfeldt J L 2015 Appl. Phys. Lett. 106 082902Google Scholar

    [22]

    Ridzwan M H, Yaakob M K, Taib M F M, Ali A M M, Hassan O H, Yahya M Z A 2017 Mater. Res. Express 4 044001Google Scholar

    [23]

    Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G, Ratcliff W D 2015 Phys. Rev. Lett. 114 217602Google Scholar

    [24]

    Wang W, Wang H, Xu X, Zhu L, He L, Wills E, Cheng X, Keavney D J, Shen J, Wu X, Xu X 2012 Appl. Phys. Lett. 101 241907Google Scholar

    [25]

    Das H, Wysocki A L, Geng Y, Wu W, Fennie C J 2014 Nat. Commun. 5 3998Google Scholar

    [26]

    Tu S, Zhang Y, Reshak A H, Auluck S, Ye L, Han X, Ma T, Huang H 2019 Nano Energy 56 840Google Scholar

    [27]

    Roy A, Mukherjee S, Gupta R, Auluck S, Prasad R, Garg A 2011 J. Phys. Condens. Matter 23 325902Google Scholar

  • 图 1  h-Lu1–xInxFeO3的球棍结构模型图 (a) P1, P2位置; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    Fig. 1.  Model of the ball-and-stick structure of h-Lu1–xInxFeO3: (a) P1, P2 position; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    图 2  h-Lu1–xFexO3的能带图 (a) h-Lu0.833In0.167FeO3; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    Fig. 2.  Energy band diagrams of h-Lu1–xFexO3: (a) h-Lu0.833In0.167FeO3; (b) h-Lu0.667In0.333FeO3; (c) h-Lu0.333In0.667FeO3

    图 3  分布态密度图 (a) 未掺杂的h-LuFeO3; (b) h-Lu0.333In0.667FeO3

    Fig. 3.  Distribution density of states: (a) Undoped h-LuFeO3; (b) h-Lu0.333In0.667FeO3.

    图 4  In掺杂前后h-LuFeO3光学吸收系数随入射光子能量的变化

    Fig. 4.  Change of optical absorption coefficient of h-LuFeO3 with incident photon energy before and after In doping.

    图 5  不同In/Lu比的h-Lu1–xInxFeO3极化值(红色曲线)和晶格常数c/a比(蓝色曲线)

    Fig. 5.  Polarization values (red curve) and lattice constant c/a ratios (blue curve) of h-Lu1–xInxFeO3 with different In/Lu ratios.

    表 1  不同磁序下不同位置的In掺杂相对能量变化

    Table 1.  Relative energy changes of In doping at different positions under different magnetic orders.

    掺杂位置G型/eVC型/eVA型/eV铁磁型/eV
    未掺00.011.370.01
    P1 位置010.383.1412.51
    P2 位置00.030.251.41
    下载: 导出CSV

    表 2  In∶Lu为1∶2和2∶1时h-Lu1–xInxO3不同磁序的相对能量

    Table 2.  Relative energy of h-Lu1–xInxO3 with different magnetic sequencewhen In∶Lu is 1∶2 and 2∶1.

    材料G型/eVC型/eVA型/eV铁磁型/eV
    h-Lu2/3In1/3FeO300.01260.86040.8604
    h-Lu1/3In2/3FeO300.00960.89520.9487
    下载: 导出CSV

    表 3  h-Lu1–xInxO3的结构优化结果

    Table 3.  Structure optimization results of h-Lu1–xInxO3.

    材料晶格常数/Å体积/Å3轴角/(°)
    abcαβγ
    (h-LuFeO3)[15]5.9655.96511.702
    (h-LuFeO3)[23]5.9855.98511.770
    h-LuFeO36.0676.06711.756374.92690.00090.000119.993
    h-Lu0.833In0.167FeO36.0426.04211.880374.77090.04790.004120.214
    h-Lu0.667In0.333FeO36.0056.00711.935372.22190.01490.033120.166
    h-Lu0.333In0.667FeO35.9225.92312.119367.51689.99990.001120.173
    下载: 导出CSV

    表 4  本工作带隙计算结果与已发表结果对比

    Table 4.  Comparison of calculated band gap results with published results.

    CASTEP[22]WIEN2K[24]VASP[25]本工作
    交换关
    联泛函
    LDAGGA-
    PBE
    GGA-
    PBEsol
    GGA-
    PBE
    U34.54.614.5
    带隙/eV0.541.11.351.16
    下载: 导出CSV
  • [1]

    Ji Y, Gao T, Wang Z L, Yang Y 2019 Nano Energy 64 103909Google Scholar

    [2]

    Teh Y S, Bhattacharya K 2019 J. Appl. Phys. 125 064103Google Scholar

    [3]

    Pal S, Swain A B, Biswas P P, Murali D, Pal A, Nanda B R K, Murugavel P 2018 Sci. Rep. 8 17Google Scholar

    [4]

    Butler K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838848Google Scholar

    [5]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [6]

    王婧, 吴霞, 邓朝勇, 朱孔军, 南策文 2014 无机材料学报 29 905911Google Scholar

    Wang J, Wu X, Deng C Y, Zhu K J, Nan C W 2014 J. Inorg. Mater. 29 905911Google Scholar

    [7]

    Chen Y, Chen J, Yang S, Li Y, Gao X, Zeng M, Fan Z, Gao X, Lu X, Liu J M 2018 Mater. Res. Bull. 107 456Google Scholar

    [8]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004Google Scholar

    [9]

    张兴良 2010 硕士学位论文 (武汉: 武汉理工大学)

    Zhang X L 2010 M. S. Thesis (Wuhan: Wuhan University Of Technology) (in Chinese)

    [10]

    Sinha K, Zhang Y, Jiang X, Wang H, Wang X, Zhang X, Ryan P J, Kim J W, Bowlan J, Yarotski D A, Li Y, DiChiara A D, Cheng X, Wu X, Xu X 2017 Phys. Rev. B 95 094110Google Scholar

    [11]

    Han H, Kim D, Chae S, Park J, Nam S Y, Choi M, Yong K, Kim H J, Son J, Jang H M 2018 Nanoscale 10 13261Google Scholar

    [12]

    Han H, Kim D, Chu K, Park J, Nam S Y, Heo S, Yang C, Jang H M 2018 ACS Appl. Mater. Interfaces 10 18461853Google Scholar

    [13]

    Akbashev A R, Semisalova A S, Perov N S, Kaul A R 2011 Appl. Phys. Lett. 99 122502Google Scholar

    [14]

    Wang W, Zhao J, Wang W, et al. 2013 Rev. Lett. 110 237601Google Scholar

    [15]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201Google Scholar

    [16]

    Lin L, Zhang H M, Liu M F, Shen S, Zhou S, Li D, Wang X, Yan Z B, Zhang Z D, Zhao J, Dong S, Liu J M 2016 Phys. Rev. B 93 075146Google Scholar

    [17]

    Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062Google Scholar

    [18]

    Fu Z, Nair H S, Xiao Y, Senyshyn A, Pomjakushin V, Feng E, Pomjakushin V, Su Y, Jin W T, Bruckel T 2016 Phys. Rev. B 94 125150Google Scholar

    [19]

    Clark S J, Segall M D, Pickard C J, Hasnip P, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke X 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [21]

    Holinsworth B S, Mazumdar D, Brooks C M, Mundy J A, Das H, Cherian J G, McGill S A, Fennie C J, Schlom D G, Musfeldt J L 2015 Appl. Phys. Lett. 106 082902Google Scholar

    [22]

    Ridzwan M H, Yaakob M K, Taib M F M, Ali A M M, Hassan O H, Yahya M Z A 2017 Mater. Res. Express 4 044001Google Scholar

    [23]

    Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G, Ratcliff W D 2015 Phys. Rev. Lett. 114 217602Google Scholar

    [24]

    Wang W, Wang H, Xu X, Zhu L, He L, Wills E, Cheng X, Keavney D J, Shen J, Wu X, Xu X 2012 Appl. Phys. Lett. 101 241907Google Scholar

    [25]

    Das H, Wysocki A L, Geng Y, Wu W, Fennie C J 2014 Nat. Commun. 5 3998Google Scholar

    [26]

    Tu S, Zhang Y, Reshak A H, Auluck S, Ye L, Han X, Ma T, Huang H 2019 Nano Energy 56 840Google Scholar

    [27]

    Roy A, Mukherjee S, Gupta R, Auluck S, Prasad R, Garg A 2011 J. Phys. Condens. Matter 23 325902Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [3] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [6] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [7] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [8] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [9] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [10] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [11] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [12] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [14] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质. 物理学报, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [15] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [16] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [17] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
计量
  • 文章访问数:  4907
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-07
  • 修回日期:  2020-09-07
  • 上网日期:  2021-01-24
  • 刊出日期:  2021-02-05

/

返回文章
返回