搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究

徐金荣 王影 朱兴凤 李平 张莉

引用本文:
Citation:

N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究

徐金荣, 王影, 朱兴凤, 李平, 张莉

First-principles study of N-doped and N-V co-doped anatase TiO2

Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li
PDF
导出引用
  • 采用基于密度泛函理论的投影缀加平面波方法和广义梯度近似加Hubbard参数的似近, 研究了锐钛矿相TiO2, N掺杂TiO2和N-V共掺杂TiO2体系的基态原子构型、电子结构. 结果表明, N掺杂后,其晶胞体积比未掺杂时要略微增大,基态构型并未发生明显变化, 而N-V共掺杂时,对称性被破坏, V原子向N原子附近靠近.计算得到的锐钛矿相TiO2带隙 Egap为3.256 eV,与实验值3.23 eV非常接近. N掺杂TiO2带隙降低了0.4 eV, 而N-V共掺杂带隙降低至2.555 eV.此外, N-V共掺杂会在价带顶和导带底之间形成受主和施主能级, 这种能级对光生电子-空穴对的分离是非常有利的,降低了再次复合的概率. 因此, N-V共掺杂TiO2可以有效地提升TiO2作为光催化剂的催化能力.
    The ground state atomic configurations and electronic structures of anatase TiO2, N-doped TiO2 and N-V co-doped TiO2 are studied by the projector augmented wave method and the generalized gradient approximation plus U (Hubbard correction) (GGA+U) based on the density functional theory. The results indicate that the volume of cell is slightly larger and the ground state configuration has no change significantly for N-doped TiO2, but the symmetry of cell is broken and the position of V atom is more close to N atom after co-doping with N and V. The band gap of anatase TiO2 is calculated to be 3.256 eV, which is in agreement with experimental value (3.23 eV). When N is doped, the gap is reduced by more than 0.4 eV. but for N-V co-doped system, the gap reduces to 2.555 eV. Moreover, the acceptor level and donor level, which can be formed between the valence band maximum and the conduction band minimum because of co-doping with N and V, are more favorable to the separation of photoelectron-hole pairs and reduce the rate of recombination. Therefore, the co-doping of anatase TiO2 with N and V can effectively improve the photocatalytic performance of anatase.
    • 基金项目: 国家自然科学基金(批准号: 11104001);安徽省优秀青年人才基金(批准号: 2012SQRL135)和安徽建筑工业学院青年科研专项项目(批准号: 201183-18)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11104001), the Excellent Young Scientists Foundation of Anhui Province, China (Grant No. 2012SQRL135), and the Special Research Foundation for Young Scientists of Anhui University of Architecture, China (Grant No. 201183-18).
    [1]

    Bhatkhande D S, Pangarkar V G, Beenackers A 2011 J. Chem. Technol. Biotechnol. 77 102

    [2]

    He X L, Cai Y Y, Zhang H M, Liang C H 2011 J. Mater. Chem. 21 475

    [3]

    Yang L X, Xiao Y, Liu S H, Li Y, Cai Q Y, Luo S L 2010 Appl. Catal. B: Environ. 94 142

    [4]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾, 刘强 2008 功能材料 39 953]

    [5]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 物理学报 57 5806]

    [6]

    Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 物理学报 57 438]

    [7]

    Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]

    [8]

    Yang K S, Dai Y, Huang B B, Han S H 2006 J. Phys. Chem. B 110 24011

    [9]

    Yang K S, Dai Y, Huang B B 2007 J. Phys. Chem. C 111 12086

    [10]

    Lai Y K, Huang J Y, Zhang H F, Subramaniam V P, Tang Y X, Gong D G, Sundar L, Sun L, Chen Z, Lin C J 2010 J. Hazard. Mater. 184 855

    [11]

    Yang K S, Dai Y, Huang B B, Whangbo M H 2008 Chem. Mater. 20 6528

    [12]

    Lu J B, Dai Y, Guo M, Yu L, Lai K R, Huang B B 2012 Appl. Phys. Lett. 100 102114

    [13]

    Wang H D, Wan W 2011 Mater. Rev. B 25 129 (in Chinese) [王海东, 万巍 2011 材料导报 B研究篇 25 129]

    [14]

    Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese) [陈琦丽, 唐超群 2006 材料科学与工程学报 24 514]

    [15]

    Chen Q L, Li B, Zheng G, He K H, Zheng A S 2011 Physica B 406 3841

    [16]

    Diana V W, Xu Q C, Mahasin A S, Kok H L, Tuti M L, Timothy T Y T 2011 Appl. Catal. A: General 401 98

    [17]

    Liu G, Li D H, Zhang R 2011 Chin. J. Struct. Chem. 30 1115

    [18]

    Liu H L, Lu Z H, Yue L, Liu J, Gan Z H, Shu C, Zhang T, Shi J, Xiong R 2011 Appl. Surf. Sci. 257 9355

    [19]

    Burdett J K, Hughbandks T, Miller G J 1987 J. Am. Chem. Soc. 109 3639

    [20]

    Ma Y F, Zhang J L, Tian B Z, Chen F, Wang L Z 2010 J. Hazard. Mater. 182 386

    [21]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [23]

    Solovyev I V, Dederichs P H, Anisimov V I 1994 Phys. Rev. B 50 16861

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Fuiishima A, Honda K 1972 Nature 238 37

    [27]

    Yun J N, Zhang Z Y, Deng Z H, Zhang F C 2006 Chin. J. Semicond. 27 15373 (in Chinese) [贠江妮, 张志勇, 邓周虎, 张富春 2006 半导体学报 27 15373]

    [28]

    Mo S D, Ching W Y 1995 Phys. Rev. B 51 13023

    [29]

    Batzill M, Morales E H, Diebold U 2006 Phys. Rev. Lett. 96 026103

    [30]

    Okato T, Sakano T, Obara M 2005 Phys. Rev. B 72 115124

    [31]

    EI Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G 2001 Science 293 1467

  • [1]

    Bhatkhande D S, Pangarkar V G, Beenackers A 2011 J. Chem. Technol. Biotechnol. 77 102

    [2]

    He X L, Cai Y Y, Zhang H M, Liang C H 2011 J. Mater. Chem. 21 475

    [3]

    Yang L X, Xiao Y, Liu S H, Li Y, Cai Q Y, Luo S L 2010 Appl. Catal. B: Environ. 94 142

    [4]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾, 刘强 2008 功能材料 39 953]

    [5]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 物理学报 57 5806]

    [6]

    Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 物理学报 57 438]

    [7]

    Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]

    [8]

    Yang K S, Dai Y, Huang B B, Han S H 2006 J. Phys. Chem. B 110 24011

    [9]

    Yang K S, Dai Y, Huang B B 2007 J. Phys. Chem. C 111 12086

    [10]

    Lai Y K, Huang J Y, Zhang H F, Subramaniam V P, Tang Y X, Gong D G, Sundar L, Sun L, Chen Z, Lin C J 2010 J. Hazard. Mater. 184 855

    [11]

    Yang K S, Dai Y, Huang B B, Whangbo M H 2008 Chem. Mater. 20 6528

    [12]

    Lu J B, Dai Y, Guo M, Yu L, Lai K R, Huang B B 2012 Appl. Phys. Lett. 100 102114

    [13]

    Wang H D, Wan W 2011 Mater. Rev. B 25 129 (in Chinese) [王海东, 万巍 2011 材料导报 B研究篇 25 129]

    [14]

    Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese) [陈琦丽, 唐超群 2006 材料科学与工程学报 24 514]

    [15]

    Chen Q L, Li B, Zheng G, He K H, Zheng A S 2011 Physica B 406 3841

    [16]

    Diana V W, Xu Q C, Mahasin A S, Kok H L, Tuti M L, Timothy T Y T 2011 Appl. Catal. A: General 401 98

    [17]

    Liu G, Li D H, Zhang R 2011 Chin. J. Struct. Chem. 30 1115

    [18]

    Liu H L, Lu Z H, Yue L, Liu J, Gan Z H, Shu C, Zhang T, Shi J, Xiong R 2011 Appl. Surf. Sci. 257 9355

    [19]

    Burdett J K, Hughbandks T, Miller G J 1987 J. Am. Chem. Soc. 109 3639

    [20]

    Ma Y F, Zhang J L, Tian B Z, Chen F, Wang L Z 2010 J. Hazard. Mater. 182 386

    [21]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [23]

    Solovyev I V, Dederichs P H, Anisimov V I 1994 Phys. Rev. B 50 16861

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Fuiishima A, Honda K 1972 Nature 238 37

    [27]

    Yun J N, Zhang Z Y, Deng Z H, Zhang F C 2006 Chin. J. Semicond. 27 15373 (in Chinese) [贠江妮, 张志勇, 邓周虎, 张富春 2006 半导体学报 27 15373]

    [28]

    Mo S D, Ching W Y 1995 Phys. Rev. B 51 13023

    [29]

    Batzill M, Morales E H, Diebold U 2006 Phys. Rev. Lett. 96 026103

    [30]

    Okato T, Sakano T, Obara M 2005 Phys. Rev. B 72 115124

    [31]

    EI Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G 2001 Science 293 1467

  • [1] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [4] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [5] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [6] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [9] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO . 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [10] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [11] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [12] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [13] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [15] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [17] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [19] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  3676
  • PDF下载量:  1091
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-17
  • 修回日期:  2012-04-15
  • 刊出日期:  2012-10-05

N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究

  • 1. 安徽建筑工业学院数理系, 合肥 230601;
  • 2. 南京师范大学物理科学与技术学院, 南京 210097
    基金项目: 国家自然科学基金(批准号: 11104001);安徽省优秀青年人才基金(批准号: 2012SQRL135)和安徽建筑工业学院青年科研专项项目(批准号: 201183-18)资助的课题.

摘要: 采用基于密度泛函理论的投影缀加平面波方法和广义梯度近似加Hubbard参数的似近, 研究了锐钛矿相TiO2, N掺杂TiO2和N-V共掺杂TiO2体系的基态原子构型、电子结构. 结果表明, N掺杂后,其晶胞体积比未掺杂时要略微增大,基态构型并未发生明显变化, 而N-V共掺杂时,对称性被破坏, V原子向N原子附近靠近.计算得到的锐钛矿相TiO2带隙 Egap为3.256 eV,与实验值3.23 eV非常接近. N掺杂TiO2带隙降低了0.4 eV, 而N-V共掺杂带隙降低至2.555 eV.此外, N-V共掺杂会在价带顶和导带底之间形成受主和施主能级, 这种能级对光生电子-空穴对的分离是非常有利的,降低了再次复合的概率. 因此, N-V共掺杂TiO2可以有效地提升TiO2作为光催化剂的催化能力.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回