-
本文在三维超声场中实现了(FeCoNiCrMn)92Mo8高熵合金的动态凝固过程, 并对其组织演变规律和力学性能提升机制进行研究. 静态凝固组织由FCC结构的初生γ相枝晶与四方结构的条状σ相组成. 随着超声振幅的增大, 瞬态空化大幅提升了初生γ相的形核率, 使其晶粒发生显著细化. 声流效应加速了固/液界面前沿溶质原子扩散, 导致初生γ相中Cr和Mo元素含量降低, 由此引发液相成分改变和(γ + σ)共晶组织形成. 液相中Cr元素的进一步富集使凝固组织中出现了亚稳μ相. 超声凝固条件下, 合金压缩屈服强度最高可达876.2 MPa, 比静态下提高了近2倍, 同时保持了33.2%的变形量, (γ + σ)共晶组织形成及其体积分数增大是合金屈服强度提升的主导因素.Three-dimensional ultrasonic waves with amplitudes of 14, 18, and 22 μm, respectively, are used during the solidification of (FeCoNiCrMn)92Mo8 high-entropy alloy, and its microstructural evolution and mechanical property are investigated in this work. Under static condition, the solidification microstructure is composed of primary γ phase dendrites with FCC structure and stripe-shaped σ phase with tetragonal structure. As the ultrasonic amplitude increases, the mean transient cavitation intensity rises to trigger off a significant nucleation rate increase of the primary γ phase to 5.6 × 1012 m–3·s–1, leading to the remarkable grain size reduction by two orders of magnitude. The maximum and the average acoustic streaming velocity increase simultaneously, which accelerates atomic diffusion at the liquid/solid interface, reducing Cr content in the primary γ phase from 18.6% to 13.1% and Mo content from 6.8% to 3.4% (atomic percent). This atomic redistribution subsequently causes the liquid composition to approach the eutectic point and facilitate the formation of (γ + σ) eutectic, which accounts for more than 50% volume fraction. The two eutectic phases exhibit a semi-coherent interface relationship characterized by [110]γ//[110]σ and $(1\bar1\bar 1) $γ//$(\overline110) $σ. Furthermore, due to the gradual enrichment of Cr atoms in the remaining liquid phase, a small quantity of metastable μ phases with Cr content up to 62.3% form in the final microstructure. The maximum compressive yield strength of the ultrasonically solidified microstructure reaches 876.2 MPa, almost twice that of static solidification microstructure, and the compressive strain reaches 33.2%. The formation of (γ + σ) eutectic is the main factor that increases the yield strength of alloy by 527.1 MPa.
-
Keywords:
- high-entropy alloy /
- ultrasonic solidification /
- eutectic microstructure /
- mechanical property
[1] Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001
Google Scholar
[2] Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G, Zhang J 2024 Chin. Phys. B 33 076501
Google Scholar
[3] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102
Google Scholar
Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102
Google Scholar
[4] Fang J Z, Li R, Yao S L, Chen J, Wang K 2024 J. Appl. Phys. 136 245901
Google Scholar
[5] Wang X, Zhai W, Li H, Wang J Y, Wei B B 2023 Acta Mater. 252 118900
Google Scholar
[6] Song H Q, Feng C S, Guan Z, Zhang W, Yang H Y, Tang Y, Zeng K, Yuan X, Zhang J W, Liu J, Zhang F X 2025 Appl. Phys. Lett. 126 031903
Google Scholar
[7] Yu Z H, Wang H Y, Sun L G, Li Z H, Zhu L L 2024 Chin. Phys. B 33 116201
Google Scholar
[8] 闻鹏, 陶钢 2022 物理学报 71 246101
Google Scholar
Wen P, Tao G 2022 Acta Phys. Sin. 71 246101
Google Scholar
[9] Cantor B 2021 Prog. Mater. Sci. 120 100754
Google Scholar
[10] Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 35 036102
Google Scholar
[11] Xing R L, Liu X P 2024 Chin. Phys. B 33 016202
Google Scholar
[12] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋 2022 物理学报 71 243101
Google Scholar
An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71 243101
Google Scholar
[13] Qin G, Chen R R, Zheng H T, Fang H Z, Wang L, Su Y Q, Guo J J, Fu H Z 2019 J. Mater. Sci. Technol. 35 578
Google Scholar
[14] Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123 100709
Google Scholar
[15] Azhagarsamy P, Sekar K, Murali K P 2022 Mater. Sci. Technol. 137 88
[16] Wang H, He Q F, Yang Y 2022 Rare Met. 41 6
[17] Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 194 15
[18] Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H, Wei B B 2016 Chin. Phys. Lett. 33 116102
Google Scholar
[19] Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509 114
Google Scholar
[20] 张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波 2024 物理学报 73 184301
Google Scholar
Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B B 2024 Acta Phys. Sin. 73 184301
Google Scholar
[21] Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 18
[22] 杜人君, 解文军 2011 物理学报 60 114302
Google Scholar
Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302
Google Scholar
[23] El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172 121090
Google Scholar
[24] Xu N X, Yu Y, Zhai W, Wang J Y, Wei B B 2023 Ultrason. Sonochem. 94 106343
Google Scholar
[25] 马艳, 林书玉, 徐洁 2018 物理学报 67 034301
Google Scholar
Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301
Google Scholar
[26] Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 66 1
Google Scholar
[27] Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008 176619
Google Scholar
[28] Jamshidi R, Brenner G 2013 Ultrasonics 53 842
Google Scholar
[29] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628
Google Scholar
[30] Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54 171
Google Scholar
[31] Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425
Google Scholar
[32] Kurz W, Fisher D J 1998 Fundamentals of Solidification (5th Ed.) (Baech: Trans Tech Publications
[33] Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804
Google Scholar
[34] Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 31 1883
Google Scholar
[35] Gale W F, Totemeier T C 1983 Smithells Metals Reference Book (8th Ed.) (Oxford: Butterworth-Heinemann
[36] Lin M J, Hu L, Zhu X N, Yan P X, Wei B B 2023 J. Alloys Compd. 968 171912
Google Scholar
[37] Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 27 72
Google Scholar
[38] Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471
Google Scholar
[39] Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 45 1765
Google Scholar
[40] Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press
[41] Labusch R 1970 Phys. Status. Solidi 41 659
Google Scholar
[42] Wang S P, Xu J 2018 Intermetallics 95 59
Google Scholar
[43] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427
Google Scholar
[44] Ma K K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62 141
Google Scholar
[45] Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 9 1517
Google Scholar
[46] Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25 806
[47] Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135 107212
Google Scholar
[48] Li J X, Yamanaka K, Zhang Y J, Furuhara T, Cao G Q, Hu J H, Chiba A 2024 Mater. Res. Lett. 12 399
Google Scholar
[49] Wu Z G, Gao Y F, Bei H B 2016 Acta Mater. 120 108
Google Scholar
-
图 1 液态(FeCoNiCrMn)92Mo8合金中声场和流场特征 (a) 模拟过程中所使用的3D模型; (b) A3D = 14 μm, (c) A3D = 18 μm和(d) A3D = 22 μm条件下声场分布; (e) P1-P2连线处的声场强度; (f) 稳态与瞬态空化平均强度; (g) A3D = 14 μm, (h) A3D = 18 μm和(i) A3D = 22 μm条件下流场分布; (j) 平均与最大流速
Fig. 1. Acoustic field and flow field characteristics in liquid (FeCoNiCrMn)92Mo8 alloy: (a) 3D model used in the simulation process; sound field distribution of (b) A3D = 14 μm, (c) A3D = 18 μm, and (d) A3D = 22 μm; (e) sound field intensity at the P1-P2 connection line; (f) average intensities of stable and transient cavitation; flow field distribution of (g) A3D = 14 μm, (h) A3D = 18 μm, and (i) A3D = 22 μm; (j) average and maximum flow velocities.
图 4 凝固组织特征尺寸及其相体积分数随超声振幅的变化规律 (a) 初生γ相平均尺寸和形核率; (b) 初生γ相与(γ + σ)共晶体积分数
Fig. 4. Scale length characteristics and phase volume fractions of solidification microstructure versus ultrasound amplitude: (a) Average size and nucleation rate of primary γ phase; (b) volume fractions of primary γ phase and (γ + σ) eutectic.
图 7 超声振幅22 μm条件下所形成的亚稳μ相结构特征 (a) HAADF图像; (b) [110]晶带轴下的SAED; (c) [100]晶带轴下的SAED; (d) HRTEM图像
Fig. 7. Structural characterization of mestable μ phase formed under 22 μm ultrasound amplitude: (a) HAADF image; (b) SAED pattern under [110] zone axis; (c) SAED pattern under [100] zone axis; (d) HRTEM image.
图 8 (FeCoNiCrMn)92Mo8合金凝固过程中的热力学计算 (a) 初生γ相吉布斯自由能随超声振幅的变化; (b) Fe16Co17Ni17Cr20Mn19Mo11相体积分数随温度的变化
Fig. 8. Thermodynamic calculations during solidification process of (FeCoNiCrMn)92Mo8 alloy: (a) Gibbs free energy of primary γ phase versus ultrasonic amplitude; (b) phase volume fractions of Fe16Co20Ni17Cr20Mn19Mo11 versus temperature.
图 9 (FeCoNiCrMn)92Mo8合金的力学性能及屈服强度贡献 (a) 压缩应力应变曲线; (b) 共晶组织、固溶以及细晶强化对于屈服强度的贡献度
Fig. 9. Mechanical properties and calculation of yield strength contribution value of (FeCoNiCrMn)92Mo8 alloy: (a) Stress-strain curves; (b) the contribution of eutectic structure, solid solution and grain strengthening to yield strength.
表 1 (FeCoNiCrMn)92Mo8合金声场计算使用的物理参数
Table 1. Physical parameters used for acoustic field calculations of (FeCoNiCrMn)92Mo8 alloy.
表 2 形核率计算使用的物理参数
Table 2. Physical parameters used for nucleation rate calculations.
表 3 屈服强度贡献值计算所使用的参数
Table 3. Parameters used for calculating the contribution value of yield strength.
表 4 (FeCoNiCrMn)92Mo8合金屈服强度的各项贡献值(单位: MPa)
Table 4. Strengthening contributions of (FeCoNiCrMn)92Mo8 alloy (in MPa).
静态 A3D = 14 μm A3D = 18 μm A3D = 22 μm 晶格摩擦 210.0 210.0 210.0 210.0 固溶强化 109.3 95.0 89.2 47.0 细晶强化 5.7 19.4 21.5 27.0 σ相强化 70.4 — — — 共晶强化 — 202.6 283.3. 527.1 理论计算
屈服强度415.4 547.0 624.0 831.1 实际屈服
强度442.6 605.6 677.4 876.2 -
[1] Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001
Google Scholar
[2] Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G, Zhang J 2024 Chin. Phys. B 33 076501
Google Scholar
[3] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102
Google Scholar
Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102
Google Scholar
[4] Fang J Z, Li R, Yao S L, Chen J, Wang K 2024 J. Appl. Phys. 136 245901
Google Scholar
[5] Wang X, Zhai W, Li H, Wang J Y, Wei B B 2023 Acta Mater. 252 118900
Google Scholar
[6] Song H Q, Feng C S, Guan Z, Zhang W, Yang H Y, Tang Y, Zeng K, Yuan X, Zhang J W, Liu J, Zhang F X 2025 Appl. Phys. Lett. 126 031903
Google Scholar
[7] Yu Z H, Wang H Y, Sun L G, Li Z H, Zhu L L 2024 Chin. Phys. B 33 116201
Google Scholar
[8] 闻鹏, 陶钢 2022 物理学报 71 246101
Google Scholar
Wen P, Tao G 2022 Acta Phys. Sin. 71 246101
Google Scholar
[9] Cantor B 2021 Prog. Mater. Sci. 120 100754
Google Scholar
[10] Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 35 036102
Google Scholar
[11] Xing R L, Liu X P 2024 Chin. Phys. B 33 016202
Google Scholar
[12] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋 2022 物理学报 71 243101
Google Scholar
An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71 243101
Google Scholar
[13] Qin G, Chen R R, Zheng H T, Fang H Z, Wang L, Su Y Q, Guo J J, Fu H Z 2019 J. Mater. Sci. Technol. 35 578
Google Scholar
[14] Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123 100709
Google Scholar
[15] Azhagarsamy P, Sekar K, Murali K P 2022 Mater. Sci. Technol. 137 88
[16] Wang H, He Q F, Yang Y 2022 Rare Met. 41 6
[17] Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 194 15
[18] Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H, Wei B B 2016 Chin. Phys. Lett. 33 116102
Google Scholar
[19] Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509 114
Google Scholar
[20] 张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波 2024 物理学报 73 184301
Google Scholar
Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B B 2024 Acta Phys. Sin. 73 184301
Google Scholar
[21] Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 18
[22] 杜人君, 解文军 2011 物理学报 60 114302
Google Scholar
Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302
Google Scholar
[23] El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172 121090
Google Scholar
[24] Xu N X, Yu Y, Zhai W, Wang J Y, Wei B B 2023 Ultrason. Sonochem. 94 106343
Google Scholar
[25] 马艳, 林书玉, 徐洁 2018 物理学报 67 034301
Google Scholar
Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301
Google Scholar
[26] Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 66 1
Google Scholar
[27] Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008 176619
Google Scholar
[28] Jamshidi R, Brenner G 2013 Ultrasonics 53 842
Google Scholar
[29] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628
Google Scholar
[30] Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54 171
Google Scholar
[31] Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425
Google Scholar
[32] Kurz W, Fisher D J 1998 Fundamentals of Solidification (5th Ed.) (Baech: Trans Tech Publications
[33] Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804
Google Scholar
[34] Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 31 1883
Google Scholar
[35] Gale W F, Totemeier T C 1983 Smithells Metals Reference Book (8th Ed.) (Oxford: Butterworth-Heinemann
[36] Lin M J, Hu L, Zhu X N, Yan P X, Wei B B 2023 J. Alloys Compd. 968 171912
Google Scholar
[37] Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 27 72
Google Scholar
[38] Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471
Google Scholar
[39] Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 45 1765
Google Scholar
[40] Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press
[41] Labusch R 1970 Phys. Status. Solidi 41 659
Google Scholar
[42] Wang S P, Xu J 2018 Intermetallics 95 59
Google Scholar
[43] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427
Google Scholar
[44] Ma K K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62 141
Google Scholar
[45] Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 9 1517
Google Scholar
[46] Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25 806
[47] Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135 107212
Google Scholar
[48] Li J X, Yamanaka K, Zhang Y J, Furuhara T, Cao G Q, Hu J H, Chiba A 2024 Mater. Res. Lett. 12 399
Google Scholar
[49] Wu Z G, Gao Y F, Bei H B 2016 Acta Mater. 120 108
Google Scholar
计量
- 文章访问数: 994
- PDF下载量: 11
- 被引次数: 0