搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能

吴昊 王旭 王建元 翟薇 魏炳波

引用本文:
Citation:

三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能

吴昊, 王旭, 王建元, 翟薇, 魏炳波
cstr: 32037.14.aps.74.20250657

Three-dimensional ultrasounds modulated solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy

WU Hao, WANG Xu, WANG Jianyuan, ZHAI Wei, WEI Bingbo
cstr: 32037.14.aps.74.20250657
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文在三维超声场中实现了(FeCoNiCrMn)92Mo8高熵合金的动态凝固过程, 并对其组织演变规律和力学性能提升机制进行研究. 静态凝固组织由FCC结构的初生γ相枝晶与四方结构的条状σ相组成. 随着超声振幅的增大, 瞬态空化大幅提升了初生γ相的形核率, 使其晶粒发生显著细化. 声流效应加速了固/液界面前沿溶质原子扩散, 导致初生γ相中Cr和Mo元素含量降低, 由此引发液相成分改变和(γ + σ)共晶组织形成. 液相中Cr元素的进一步富集使凝固组织中出现了亚稳μ相. 超声凝固条件下, 合金压缩屈服强度最高可达876.2 MPa, 比静态下提高了近2倍, 同时保持了33.2%的变形量, (γ + σ)共晶组织形成及其体积分数增大是合金屈服强度提升的主导因素.
    Three-dimensional ultrasonic waves with amplitudes of 14, 18, and 22 μm, respectively, are used during the solidification of (FeCoNiCrMn)92Mo8 high-entropy alloy, and its microstructural evolution and mechanical property are investigated in this work. Under static condition, the solidification microstructure is composed of primary γ phase dendrites with FCC structure and stripe-shaped σ phase with tetragonal structure. As the ultrasonic amplitude increases, the mean transient cavitation intensity rises to trigger off a significant nucleation rate increase of the primary γ phase to 5.6 × 1012 m–3·s–1, leading to the remarkable grain size reduction by two orders of magnitude. The maximum and the average acoustic streaming velocity increase simultaneously, which accelerates atomic diffusion at the liquid/solid interface, reducing Cr content in the primary γ phase from 18.6% to 13.1% and Mo content from 6.8% to 3.4% (atomic percent). This atomic redistribution subsequently causes the liquid composition to approach the eutectic point and facilitate the formation of (γ + σ) eutectic, which accounts for more than 50% volume fraction. The two eutectic phases exhibit a semi-coherent interface relationship characterized by [110]γ//[110]σ and $(1\bar1\bar 1) $γ//$(\overline110) $σ. Furthermore, due to the gradual enrichment of Cr atoms in the remaining liquid phase, a small quantity of metastable μ phases with Cr content up to 62.3% form in the final microstructure. The maximum compressive yield strength of the ultrasonically solidified microstructure reaches 876.2 MPa, almost twice that of static solidification microstructure, and the compressive strain reaches 33.2%. The formation of (γ + σ) eutectic is the main factor that increases the yield strength of alloy by 527.1 MPa.
      通信作者: 翟薇, zhaiwei322@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52130405, 52088101)和陕西省自然科学基础研究计划(批准号: 2023-JC-JQ-28)资助的课题.
      Corresponding author: ZHAI Wei, zhaiwei322@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130405, 52088101) and the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2023-JC-JQ-28).
    [1]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [2]

    Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G, Zhang J 2024 Chin. Phys. B 33 076501Google Scholar

    [3]

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102Google Scholar

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102Google Scholar

    [4]

    Fang J Z, Li R, Yao S L, Chen J, Wang K 2024 J. Appl. Phys. 136 245901Google Scholar

    [5]

    Wang X, Zhai W, Li H, Wang J Y, Wei B B 2023 Acta Mater. 252 118900Google Scholar

    [6]

    Song H Q, Feng C S, Guan Z, Zhang W, Yang H Y, Tang Y, Zeng K, Yuan X, Zhang J W, Liu J, Zhang F X 2025 Appl. Phys. Lett. 126 031903Google Scholar

    [7]

    Yu Z H, Wang H Y, Sun L G, Li Z H, Zhu L L 2024 Chin. Phys. B 33 116201Google Scholar

    [8]

    闻鹏, 陶钢 2022 物理学报 71 246101Google Scholar

    Wen P, Tao G 2022 Acta Phys. Sin. 71 246101Google Scholar

    [9]

    Cantor B 2021 Prog. Mater. Sci. 120 100754Google Scholar

    [10]

    Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 35 036102Google Scholar

    [11]

    Xing R L, Liu X P 2024 Chin. Phys. B 33 016202Google Scholar

    [12]

    安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋 2022 物理学报 71 243101Google Scholar

    An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71 243101Google Scholar

    [13]

    Qin G, Chen R R, Zheng H T, Fang H Z, Wang L, Su Y Q, Guo J J, Fu H Z 2019 J. Mater. Sci. Technol. 35 578Google Scholar

    [14]

    Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123 100709Google Scholar

    [15]

    Azhagarsamy P, Sekar K, Murali K P 2022 Mater. Sci. Technol. 137 88

    [16]

    Wang H, He Q F, Yang Y 2022 Rare Met. 41 6

    [17]

    Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 194 15

    [18]

    Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H, Wei B B 2016 Chin. Phys. Lett. 33 116102Google Scholar

    [19]

    Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509 114Google Scholar

    [20]

    张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波 2024 物理学报 73 184301Google Scholar

    Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B B 2024 Acta Phys. Sin. 73 184301Google Scholar

    [21]

    Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 18

    [22]

    杜人君, 解文军 2011 物理学报 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [23]

    El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172 121090Google Scholar

    [24]

    Xu N X, Yu Y, Zhai W, Wang J Y, Wei B B 2023 Ultrason. Sonochem. 94 106343Google Scholar

    [25]

    马艳, 林书玉, 徐洁 2018 物理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [26]

    Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 66 1Google Scholar

    [27]

    Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008 176619Google Scholar

    [28]

    Jamshidi R, Brenner G 2013 Ultrasonics 53 842Google Scholar

    [29]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [30]

    Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54 171Google Scholar

    [31]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar

    [32]

    Kurz W, Fisher D J 1998 Fundamentals of Solidification (5th Ed.) (Baech: Trans Tech Publications

    [33]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804Google Scholar

    [34]

    Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 31 1883Google Scholar

    [35]

    Gale W F, Totemeier T C 1983 Smithells Metals Reference Book (8th Ed.) (Oxford: Butterworth-Heinemann

    [36]

    Lin M J, Hu L, Zhu X N, Yan P X, Wei B B 2023 J. Alloys Compd. 968 171912Google Scholar

    [37]

    Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 27 72Google Scholar

    [38]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [39]

    Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 45 1765Google Scholar

    [40]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press

    [41]

    Labusch R 1970 Phys. Status. Solidi 41 659Google Scholar

    [42]

    Wang S P, Xu J 2018 Intermetallics 95 59Google Scholar

    [43]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427Google Scholar

    [44]

    Ma K K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62 141Google Scholar

    [45]

    Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 9 1517Google Scholar

    [46]

    Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25 806

    [47]

    Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135 107212Google Scholar

    [48]

    Li J X, Yamanaka K, Zhang Y J, Furuhara T, Cao G Q, Hu J H, Chiba A 2024 Mater. Res. Lett. 12 399Google Scholar

    [49]

    Wu Z G, Gao Y F, Bei H B 2016 Acta Mater. 120 108Google Scholar

  • 图 1  液态(FeCoNiCrMn)92Mo8合金中声场和流场特征 (a) 模拟过程中所使用的3D模型; (b) A3D = 14 μm, (c) A3D = 18 μm和(d) A3D = 22 μm条件下声场分布; (e) P1-P2连线处的声场强度; (f) 稳态与瞬态空化平均强度; (g) A3D = 14 μm, (h) A3D = 18 μm和(i) A3D = 22 μm条件下流场分布; (j) 平均与最大流速

    Fig. 1.  Acoustic field and flow field characteristics in liquid (FeCoNiCrMn)92Mo8 alloy: (a) 3D model used in the simulation process; sound field distribution of (b) A3D = 14 μm, (c) A3D = 18 μm, and (d) A3D = 22 μm; (e) sound field intensity at the P1-P2 connection line; (f) average intensities of stable and transient cavitation; flow field distribution of (g) A3D = 14 μm, (h) A3D = 18 μm, and (i) A3D = 22 μm; (j) average and maximum flow velocities.

    图 2  静态和超声凝固条件下(FeCoNiCrMn)92Mo8合金相组成与热分析 (a) XRD图谱; (b) DSC曲线

    Fig. 2.  Phase constitution and thermal analysis of (FeCoNiCrMn)92Mo8 alloy under static and ultrasonic solidification conditions: (a) XRD patterns; (b) DSC curves.

    图 3  超声场中(FeCoNiCrMn)92Mo8合金凝固组织形貌 (a) 静态; (b) A3D =14 μm; (c) A3D = 22 μm

    Fig. 3.  Solidification microstructure of (FeCoNiCrMn)92Mo8 alloy within ultrasonic fields: (a) Static; (b) A3D = 14 μm; (c) A3D = 22 μm

    图 4  凝固组织特征尺寸及其相体积分数随超声振幅的变化规律 (a) 初生γ相平均尺寸和形核率; (b) 初生γ相与(γ + σ)共晶体积分数

    Fig. 4.  Scale length characteristics and phase volume fractions of solidification microstructure versus ultrasound amplitude: (a) Average size and nucleation rate of primary γ phase; (b) volume fractions of primary γ phase and (γ + σ) eutectic.

    图 5  (FeCoNiCrMn)92Mo8合金各相Cr和Mo元素含量随超声振幅的变化规律 (a) 初生γ相; (b) (γ + σ)共晶

    Fig. 5.  Cr and Mo element contents in various phases of (FeCoNiCrMn)92Mo8 alloy versus ultrasound amplitude: (a) Primary γ phase; (b) (γ + σ) eutectic.

    图 6  超声振幅22 μm条件下共晶γ/σ界面晶体学分析 (a) HAADF图像; (b) HRTEM图像; (c) HRTEM图像的FFT; (d) SAED模拟图

    Fig. 6.  Crystallographic analysis of eutectic γ/σ interface under 22 μm ultrasound amplitude: (a) HAADF image; (b) HRTEM image; (c) FFT of HRTEM image; (d) simulated SAED pattern.

    图 7  超声振幅22 μm条件下所形成的亚稳μ相结构特征 (a) HAADF图像; (b) [110]晶带轴下的SAED; (c) [100]晶带轴下的SAED; (d) HRTEM图像

    Fig. 7.  Structural characterization of mestable μ phase formed under 22 μm ultrasound amplitude: (a) HAADF image; (b) SAED pattern under [110] zone axis; (c) SAED pattern under [100] zone axis; (d) HRTEM image.

    图 8  (FeCoNiCrMn)92Mo8合金凝固过程中的热力学计算 (a) 初生γ相吉布斯自由能随超声振幅的变化; (b) Fe16Co17Ni17Cr20Mn19Mo11相体积分数随温度的变化

    Fig. 8.  Thermodynamic calculations during solidification process of (FeCoNiCrMn)92Mo8 alloy: (a) Gibbs free energy of primary γ phase versus ultrasonic amplitude; (b) phase volume fractions of Fe16Co20Ni17Cr20Mn19Mo11 versus temperature.

    图 9  (FeCoNiCrMn)92Mo8合金的力学性能及屈服强度贡献 (a) 压缩应力应变曲线; (b) 共晶组织、固溶以及细晶强化对于屈服强度的贡献度

    Fig. 9.  Mechanical properties and calculation of yield strength contribution value of (FeCoNiCrMn)92Mo8 alloy: (a) Stress-strain curves; (b) the contribution of eutectic structure, solid solution and grain strengthening to yield strength.

    表 1  (FeCoNiCrMn)92Mo8合金声场计算使用的物理参数

    Table 1.  Physical parameters used for acoustic field calculations of (FeCoNiCrMn)92Mo8 alloy.

    参数 数值 参考文献
    初始气泡半径 R0/μm 3 [5,31]
    初始气泡密度 N/m–3 1.9×109 [5]
    密度 ρL/(kg·m–3) 8230 CALPHAD
    黏度 ηL/(Pa·s) 8.2×10–3 CALPHAD
    声速 cL/(m·s–1) 5170 [5]
    表面张力 σL/(N·m–1) 1.5 CALPHAD
    石墨铸模密度 ρm/(kg·m–3) 1820 [5]
    石墨铸模声速 cm/(m·s–1) 3000 [5]
    下载: 导出CSV

    表 2  形核率计算使用的物理参数

    Table 2.  Physical parameters used for nucleation rate calculations.

    参数 数值 参考文献
    合金体积变化 ∆V/(cm3·mol–1) 0.26 [35]
    合金熔化焓 ∆H/( J·mol–1) 12982 CALPHAD
    润湿角因子 f(θ) 0.0001 [36]
    γ 相摩尔体积 Vm/(cm3·mol–1) 7.80 [35]
    γ 相摩尔焓变 ∆Hm/(J·mol–1) 13297 CALPHAD
    下载: 导出CSV

    表 3  屈服强度贡献值计算所使用的参数

    Table 3.  Parameters used for calculating the contribution value of yield strength.

    符号 数值 参考文献
    剪切模量G0/GPa 81.3 [42,45]
    拟合系数Z 0.0074 [42]
    γ 枝晶Hall-Petch系数
    ky/(MPa·μm1/2)
    497 [43,44,46]
    共晶Hall-Petch系数
    kh/(MPa·μm1/2)
    750 [43,44,4749]
    共晶层片间距λ/μm 0.9 本文统计
    γ 相体积分数fγ/% 91.2, 77.4, 68.4, 35.4 本文统计
    共晶体积分数feu/% 0, 22.6, 31.6, 58.8 本文统计
    初生相平均尺寸d/μm 7622, 656, 537, 45 本文统计
    下载: 导出CSV

    表 4  (FeCoNiCrMn)92Mo8合金屈服强度的各项贡献值(单位: MPa)

    Table 4.  Strengthening contributions of (FeCoNiCrMn)92Mo8 alloy (in MPa).

    静态 A3D = 14 μm A3D = 18 μm A3D = 22 μm
    晶格摩擦 210.0 210.0 210.0 210.0
    固溶强化 109.3 95.0 89.2 47.0
    细晶强化 5.7 19.4 21.5 27.0
    σ相强化 70.4
    共晶强化 202.6 283.3. 527.1
    理论计算
    屈服强度
    415.4 547.0 624.0 831.1
    实际屈服
    强度
    442.6 605.6 677.4 876.2
    下载: 导出CSV
  • [1]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [2]

    Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G, Zhang J 2024 Chin. Phys. B 33 076501Google Scholar

    [3]

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102Google Scholar

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102Google Scholar

    [4]

    Fang J Z, Li R, Yao S L, Chen J, Wang K 2024 J. Appl. Phys. 136 245901Google Scholar

    [5]

    Wang X, Zhai W, Li H, Wang J Y, Wei B B 2023 Acta Mater. 252 118900Google Scholar

    [6]

    Song H Q, Feng C S, Guan Z, Zhang W, Yang H Y, Tang Y, Zeng K, Yuan X, Zhang J W, Liu J, Zhang F X 2025 Appl. Phys. Lett. 126 031903Google Scholar

    [7]

    Yu Z H, Wang H Y, Sun L G, Li Z H, Zhu L L 2024 Chin. Phys. B 33 116201Google Scholar

    [8]

    闻鹏, 陶钢 2022 物理学报 71 246101Google Scholar

    Wen P, Tao G 2022 Acta Phys. Sin. 71 246101Google Scholar

    [9]

    Cantor B 2021 Prog. Mater. Sci. 120 100754Google Scholar

    [10]

    Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 35 036102Google Scholar

    [11]

    Xing R L, Liu X P 2024 Chin. Phys. B 33 016202Google Scholar

    [12]

    安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋 2022 物理学报 71 243101Google Scholar

    An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71 243101Google Scholar

    [13]

    Qin G, Chen R R, Zheng H T, Fang H Z, Wang L, Su Y Q, Guo J J, Fu H Z 2019 J. Mater. Sci. Technol. 35 578Google Scholar

    [14]

    Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123 100709Google Scholar

    [15]

    Azhagarsamy P, Sekar K, Murali K P 2022 Mater. Sci. Technol. 137 88

    [16]

    Wang H, He Q F, Yang Y 2022 Rare Met. 41 6

    [17]

    Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 194 15

    [18]

    Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H, Wei B B 2016 Chin. Phys. Lett. 33 116102Google Scholar

    [19]

    Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509 114Google Scholar

    [20]

    张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波 2024 物理学报 73 184301Google Scholar

    Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B B 2024 Acta Phys. Sin. 73 184301Google Scholar

    [21]

    Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 18

    [22]

    杜人君, 解文军 2011 物理学报 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [23]

    El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172 121090Google Scholar

    [24]

    Xu N X, Yu Y, Zhai W, Wang J Y, Wei B B 2023 Ultrason. Sonochem. 94 106343Google Scholar

    [25]

    马艳, 林书玉, 徐洁 2018 物理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [26]

    Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 66 1Google Scholar

    [27]

    Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008 176619Google Scholar

    [28]

    Jamshidi R, Brenner G 2013 Ultrasonics 53 842Google Scholar

    [29]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [30]

    Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54 171Google Scholar

    [31]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar

    [32]

    Kurz W, Fisher D J 1998 Fundamentals of Solidification (5th Ed.) (Baech: Trans Tech Publications

    [33]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804Google Scholar

    [34]

    Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 31 1883Google Scholar

    [35]

    Gale W F, Totemeier T C 1983 Smithells Metals Reference Book (8th Ed.) (Oxford: Butterworth-Heinemann

    [36]

    Lin M J, Hu L, Zhu X N, Yan P X, Wei B B 2023 J. Alloys Compd. 968 171912Google Scholar

    [37]

    Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 27 72Google Scholar

    [38]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [39]

    Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 45 1765Google Scholar

    [40]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press

    [41]

    Labusch R 1970 Phys. Status. Solidi 41 659Google Scholar

    [42]

    Wang S P, Xu J 2018 Intermetallics 95 59Google Scholar

    [43]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427Google Scholar

    [44]

    Ma K K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62 141Google Scholar

    [45]

    Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 9 1517Google Scholar

    [46]

    Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25 806

    [47]

    Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135 107212Google Scholar

    [48]

    Li J X, Yamanaka K, Zhang Y J, Furuhara T, Cao G Q, Hu J H, Chiba A 2024 Mater. Res. Lett. 12 399Google Scholar

    [49]

    Wu Z G, Gao Y F, Bei H B 2016 Acta Mater. 120 108Google Scholar

  • [1] 王博, 江鸿翔, 张丽丽, 何杰. 微量Mg及热处理对Al-7Si合金组织和性能的影响. 物理学报, 2025, 74(18): . doi: 10.7498/aps.74.20250776
    [2] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, 2025, 74(13): 138102. doi: 10.7498/aps.74.20250518
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [5] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [6] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [7] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [8] 易军. 非晶纤维的制备和力学行为. 物理学报, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [9] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [11] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [12] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [13] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [14] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [15] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  994
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-06-24
  • 上网日期:  2025-07-01
  • 刊出日期:  2025-09-05

/

返回文章
返回