搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能

吴昊 王旭 王建元 翟薇 魏炳波

引用本文:
Citation:

三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能

吴昊, 王旭, 王建元, 翟薇, 魏炳波

Three-dimensional ultrasounds modulate solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy

WU Hao, WANG Xu, WANG Jianyuan, ZHAI Wei, WEI Bingbo
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 三维超声场中实现了(FeCoNiCrMn)92Mo8高熵合金的动态凝固过程,研究了其组织演变规律和力学性能提升机制。静态凝固组织由FCC结构的初生γ相枝晶与四方结构的条状σ相组成。随着超声振幅的增加,瞬态空化大幅提升了初生γ相的形核率,使其晶粒发生显著细化。声流效应加速了固/液界面前沿溶质原子扩散,导致初生γ相中Cr和Mo元素含量降低,由此引发液相成分改变和(γ+σ)共晶组织形成。液相中Cr元素的进一步富集使凝固组织中出现了亚稳μ相。超声凝固条件下,合金压缩屈服强度最高可达876.2 MPa,比静态下提高了近2倍,同时保持了33.2%的变形量,(γ+σ)共晶组织形成及其体积分数增大是合金屈服强度提升的主导因素。
    Three-dimensional ultrasonic waves with amplitudes of 14, 18, and 22 μm were applied during the solidification of (FeCoNiCrMn)92Mo8 high-entropy alloy, and its microstructural evolution and mechanical property were investigated. Under static condition, the solidification microstructure was composed of primary γ phase dendrites with FCC structure and stripe-shaped σ phase with tetragonal structure. As the ultrasonic amplitude increased, the mean transient cavitation intensity rose to trigger a significant nucleation rate increase of the primary γ phase to 5.6×1012 m-3·s-1, leading to the remarkable grain size reduction by two orders of magnitude. The maximum and average acoustic streaming velocity increased concurrently, which accelerated atomic diffusion at the liquid/solid interface, reducing Cr content in the primary γ phase from 18.6 at.% to 13.1 at.% and Mo content from 6.8 at.% to 3.4 at.%. This atomic redistribution subsequently caused the liquid composition approaching the eutectic point and facilitated the formation of (γ+σ) eutecticss, which took up more than 50% volume fraction. The two eutectic phases exhibited a semi-coherent interface relationship characterized by (110)γ//(110)σ and (1-1-1)γ//(-110)σ. Furthermore, due to the progressive enrichment of Cr atoms in the remaint liquid phase, a small amount of metastable μ phase with Cr content up to 62.3 at.% formed in the final microstructure. The maximum compressive yield strength of the ultrasonically solidified microstructure reached 876.2 MPa, which was nearly twice of that for static solidification microstructure, and the compressive strain reached 33.2%. The formation of (γ+σ) eutectics represented as the dominant factor to contribute an enhancement of 527.1 MPa to the alloy's yield strength.
  • [1]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113107001

    [2]

    Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G Zhang J 2024 Chin. Phys. B 337

    [3]

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72076102(in Chinese) [王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏2023物理学报 72076102]

    [4]

    Fang J, Li R, Yao S, Chen J, Wang K 2024 J. Appl. Phys. 136245901

    [5]

    Wang X, Zhai W, Li H, Wang J Y, Wei B 2023 Acta Mater. 252118900

    [6]

    Song H, Feng C, Guan Z, Zhang W, Yang H, Tang Y, Zeng K, Yuan X, Zhang J, Liu J, Zhang F 2025 Appl. Phys. Lett. 126031903

    [7]

    Yu Z, Wang H, Sun L, Li Z, Zhu L 2024 Chin. Phys. B 3311

    [8]

    Wen P, Tao G 2022 Acta Phys. Sin. 7124(in Chinese) [闻鹏, 陶钢2022物理学报7124]

    [9]

    Cantor B 2021 Prog. Mater. Sci. 120100754

    [10]

    Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 353

    [11]

    Xing R, Liu X 2024 Chin. Phys. B. 331

    [12]

    An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71243101(in Chinese) [安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋2022物理学报71243101]

    [13]

    Qin G, Chen R, Zheng H, Fang H, Wang L, Su Y, Guo J, Fu H 2019 J. Mater. Sci. Technol. 35578

    [14]

    Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123100709

    [15]

    Azhagarsamy P,Sekar K, Murali K P 2022 Mater. Sci. Technol. 13788

    [16]

    Wang H, He Q, Yang Y 2022 Rare Met. 416

    [17]

    Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 19415

    [18]

    Wang W, Meng L, Li L, Hu L, Zhou K, Kong Z, Wei B 2016 Chin. Phys. L. 3311

    [19]

    Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509114

    [20]

    Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B 2024 Acta Phys. Sin. 73184301(in Chinese) [张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波2024物理学报73184301]

    [21]

    Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 8918

    [22]

    Du R J, Xie W J 2011 Acta Phys. Sin. 6011(in Chinese) [杜人君, 解文军2011物理学报6011]

    [23]

    El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172121090

    [24]

    Xu N, Yu Y, Zhai W, Wang J, Wei B 2023 Ultrason. Sonochem. 94106343

    [25]

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67034301(in Chinese) [马艳, 林书玉, 徐洁2018物理学报67034301]

    [26]

    Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 661

    [27]

    Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008176619

    [28]

    Jamshidi R, Brenner G 2013 Ultrasonics 53842

    [29]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68628

    [30]

    Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54171

    [31]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74425

    [32]

    Kurz W, Fisher D J 1998 Fundamentals of solidification (5th Edition) (Baech: Trans Tech Publications)

    [33]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21804

    [34]

    Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 311883

    [35]

    Gale W F, Totemeier T C 1983 Smithells metals reference Book (8th Edition) (Oxford: Butterworth-Heinemann)

    [36]

    Lin M J, Hu L, Zhu X N, Yan P X, Wei B 2023 J. Alloys Compd. 968171912

    [37]

    Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 2772

    [38]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8471

    [39]

    Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 451765

    [40]

    Eskin G I, Eskin D G 2014 Ultrasonic treatment of light alloy melts (Boca Raton: CRC Press)

    [41]

    Labusch R 1970 Phys. Status. Solidi. 41659

    [42]

    Wang S, Xu J 2018 Intermetallics. 9559

    [43]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51427

    [44]

    Ma K, Wen H, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62141

    [45]

    Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 91517

    [46]

    Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25806

    [47]

    Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135107212

    [48]

    Li J, Yamanaka K, Zhang Y, Furuhara T, Cao G, Hu J, Chiba A 2024 Mater. Res. Lett. 12399

    [49]

    Wu Z, Gao Y, Bei H 2016 Acta Mater. 120108

  • [1] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, doi: 10.7498/aps.74.20250518
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20221621
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [4] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, doi: 10.7498/aps.70.20201986
    [5] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [6] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, doi: 10.7498/aps.69.20191671
    [7] 易军. 非晶纤维的制备和力学行为. 物理学报, doi: 10.7498/aps.66.178102
    [8] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, doi: 10.7498/aps.66.178101
    [9] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.156201
    [10] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [11] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响. 物理学报, doi: 10.7498/aps.64.196201
    [12] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, doi: 10.7498/aps.63.098102
    [13] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, doi: 10.7498/aps.63.136801
    [14] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, doi: 10.7498/aps.61.167101
    [15] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, doi: 10.7498/aps.58.644
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, doi: 10.7498/aps.56.6118
    [17] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, doi: 10.7498/aps.55.648
    [18] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.54.1665
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回