搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金的离子辐照效应

卞西磊 王刚

引用本文:
Citation:

非晶合金的离子辐照效应

卞西磊, 王刚

Ion irradiation of metallic glasses

Bian Xi-Lei, Wang Gang
PDF
导出引用
  • 非晶合金作为一种快速凝固形成的新型合金材料,引起了材料研究者的极大兴趣.微观结构上长程无序、短程有序的特征使其具有独特的物理、化学和力学性能,在许多领域展现出良好的应用前景,尤其是有望成为核反应堆、航空航天等强辐照环境下的备选结构材料.本文深入探讨非晶合金的辐照效应,主要讨论离子辐照对非晶合金微观结构、宏观力学性能以及其他物理化学性能的影响,可为进一步理解非晶合金的微观结构和宏观力学性能之间的关系提供有效的实验和理论基础,也可为非晶合金在强辐照环境下的服役性能预测提供实验依据,对推进非晶合金这一先进材料的工程化应用具有重要的理论与实际意义.
    Metallic glasses (MGs), as new disordered materials prepared by rapidly quenching melted alloys, have attracted tremendous attention in the material science community. Due to their long-ranged disorderd and short-ranged ordered structures, MGs usually exhibit uniquely physical, chemical and mechanical properties, which give rise to promising applications in many fields, and especially they are expected to be potentially structural materials used in irradiation conditions, such as in nuclear reactors and aerospace.In this paper, the effects of ion irradiation on the microstructure, mechanical properties, physical, and chemical properties of MGs are reviewed. It is found that the effects of ion irradiation on the microstructures and mechanical properties depend on the ion energy as well as the composition of MG. When high energy ions interact with a solid, the collisions take place between the incident ions and atoms of the solid, which are dominated by inelastic processes (electronic stopping) and elastic processes (nuclear stopping). The inelastic processes result in the excitation and ionization of substrate atoms. In contrast, the elastic processes lead to ballistic atomic displacements. Nuclear stopping can produce structure defects and irradiation damage in glassy phase. The collisions between the incident ions and the target atoms in MGs can cause the target atoms to deviate from their original positions, and leave a large number of vacancies and interstitial atoms behind. The separations between the vacancies and the interstitial atoms form displacement cascades. The interstitial atoms with a low kinetic energy can transfer self-energies to thermal energies, resulting in a thermal spike due to the accumulation of a large quantity of the thermal energies from interstitial atoms. Such a thermal spike will cause MGs to melt and resolidify, which therefore makes the structure of glassy phase changed. Furthermore, the ion irradiation can modify the structures of MGs by introducing excessive free volumes and promoting the mobilities of atoms, which leads to the dilatation of the glassy phase and nanocrystallization. The increase of free volumes softens the MGs, and then causes the plastic deformation mechanism to transform from a heterogeneous deformation to a homogeneous deformation, which significantly enhances the plastic deformation ability.This review paper can not only improve the understanding of the relationship between microstructure evolution and macroscopic mechanical properties, and provide an experimental and fundamental basis to understand the deformation mechanism of MGs, but also summarize the performances of MGs under high dosage of ion irradiation. Moreover, it is of fundamental and practical importance for engineering applications of such advanced materials.
      通信作者: 王刚, g.wang@i.shu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB856800)和国家自然科学基金(批准号:51671120)资助的课题.
      Corresponding author: Wang Gang, g.wang@i.shu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856800) and the National Natural Science Foundation of China (Grant No. 51671120).
    [1]

    Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)

    [2]

    Williams J C, Starke E A 2003 Acta Mater. 51 5775

    [3]

    Greer A L 1995 Science 267 1947

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Ritchie R O 2011 Nat. Mater. 10 817

    [7]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [8]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [9]

    Mayr S G 2005 Phys. Rev. B 71 144109

    [10]

    Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106

    [11]

    Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505

    [12]

    Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493

    [13]

    Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625

    [14]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265

    [15]

    Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [16]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827

    [17]

    Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41

    [18]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66

    [19]

    Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62

    [20]

    Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045

    [21]

    Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887

    [22]

    Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609

    [23]

    Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308

    [24]

    Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115

    [25]

    Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722

    [26]

    Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221

    [27]

    Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910

    [28]

    Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256

    [29]

    Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502

    [30]

    Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514

    [31]

    Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910

    [32]

    Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462

    [33]

    Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504

    [34]

    Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407

    [35]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [36]

    Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165

    [37]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [38]

    Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176

    [39]

    Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35

    [40]

    Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225

    [41]

    Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118

    [42]

    Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702

  • [1]

    Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)

    [2]

    Williams J C, Starke E A 2003 Acta Mater. 51 5775

    [3]

    Greer A L 1995 Science 267 1947

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Ritchie R O 2011 Nat. Mater. 10 817

    [7]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [8]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [9]

    Mayr S G 2005 Phys. Rev. B 71 144109

    [10]

    Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106

    [11]

    Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505

    [12]

    Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493

    [13]

    Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625

    [14]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265

    [15]

    Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [16]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827

    [17]

    Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41

    [18]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66

    [19]

    Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62

    [20]

    Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045

    [21]

    Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887

    [22]

    Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609

    [23]

    Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308

    [24]

    Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115

    [25]

    Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722

    [26]

    Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221

    [27]

    Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910

    [28]

    Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256

    [29]

    Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502

    [30]

    Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514

    [31]

    Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910

    [32]

    Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462

    [33]

    Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504

    [34]

    Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407

    [35]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [36]

    Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165

    [37]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [38]

    Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176

    [39]

    Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35

    [40]

    Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225

    [41]

    Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118

    [42]

    Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220446
    [2] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [5] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [6] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [7] 任景莉, 于利萍, 张李盈. 非晶物质中的临界现象. 物理学报, 2017, 66(17): 176401. doi: 10.7498/aps.66.176401
    [8] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [9] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [10] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [11] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [14] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [16] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [17] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  4268
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-06-26
  • 刊出日期:  2017-09-05

非晶合金的离子辐照效应

  • 1. 上海大学材料研究所, 微结构重点实验室, 上海 200444
  • 通信作者: 王刚, g.wang@i.shu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2015CB856800)和国家自然科学基金(批准号:51671120)资助的课题.

摘要: 非晶合金作为一种快速凝固形成的新型合金材料,引起了材料研究者的极大兴趣.微观结构上长程无序、短程有序的特征使其具有独特的物理、化学和力学性能,在许多领域展现出良好的应用前景,尤其是有望成为核反应堆、航空航天等强辐照环境下的备选结构材料.本文深入探讨非晶合金的辐照效应,主要讨论离子辐照对非晶合金微观结构、宏观力学性能以及其他物理化学性能的影响,可为进一步理解非晶合金的微观结构和宏观力学性能之间的关系提供有效的实验和理论基础,也可为非晶合金在强辐照环境下的服役性能预测提供实验依据,对推进非晶合金这一先进材料的工程化应用具有重要的理论与实际意义.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回