搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金在介观尺度下的结构特征:关联原子构型与宏观性能的空间非均匀性

朱凡 周炯 黄煌 温文馨 叶杰宇 严珍珍

引用本文:
Citation:

非晶合金在介观尺度下的结构特征:关联原子构型与宏观性能的空间非均匀性

朱凡, 周炯, 黄煌, 温文馨, 叶杰宇, 严珍珍

Microstructure of metallic glasses at mesoscopic scale: spatial heterogeneity in correlating atomic configurations with macroscopic properties

ZHU Fan, ZHOU Jiong, HUANG Huang, WEN Wenxin, YE Jieyu, YAN Zhenzhen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非晶合金的原子排列没有长程周期性,呈现出非晶态的结构特征。其特殊的结构特征导致非晶合金的研究方法不同于传统的金属晶体材料,主要集中在两个尺度:一类在宏观尺度下通过合金设计、热力学参数等手段研究玻璃形成能力以及力学行为等;另一类在原子尺度下通过计算模拟及衍射等手段研究非晶合金的中短程序等。两类方法的尺度相差了7个以上的数量级,很难直接建立两者之间的定量关系,亟需一个可以在介观尺度下将原子构型与宏观性能关联起来的结构特征。随着非晶结构表征技术的发展,非晶合金被发现在中短程序之上还存在纳、微米级别的空间非均匀性,其尺度介于宏观尺度和原子尺度之间。本文将首先阐述非晶合金的中短程序及其局限性;而后,介绍空间非均匀性的实验表征方法,并重点介绍电子显微表征方法以及局部原子构型,讨论其作为非晶态结构特征与β弛豫行为、力学行为、热力学稳定性以及玻璃形成能力等宏观性能的内禀关联。空间非均匀性作为非晶合金在介观尺度下的结构特征,可成为关联非晶合金的原子中短程序与宏观性能的纽带。
    The atomic arrangement of metallic glasses lacks long-range periodicity, displaying structural characteristics of an amorphous state. Their unique structural features lead to research methods that differ from traditional metallic crystalline materials, focusing mainly on two scales: one class at the macroscopic scale investigating glass-forming ability and mechanical behavior through alloy design, thermodynamic parameters, and other means; the other class at the atomic scale studying medium- to short-range orders of metallic glass through computational simulations and diffraction techniques. There is over a seven-order magnitude difference between the scales of these two methods, making it difficult to establish a direct quantitative relationship between the two, necessitating a structural feature that can connect atomic configurations with macroscopic properties at a mesoscopic scale. With the advancement of characterization techniques for amorphous structures, metallic glasses have been found to exhibit nanoscale and microscale spatial heterogeneity above medium- and short-range orders, with their scale falling between macroscopic and atomic scales. This article will introduce experimental characterization methods for spatial heterogeneity, focus on the electron microscopic characterization methods of spatial heterogeneity and local atomic orders, and discuss their intrinsic correlations with macroscopic properties such as β-relaxation behavior, mechanical behavior, thermodynamic stability, and glass-forming ability. As a structural feature of metallic glasses at the mesoscopic scale, spatial heterogeneity can serve as a link connecting the atomic medium- to short-range orders with macroscopic properties.
  • [1]

    Wang W H 2013 Prog. Phys. 33177(in Chinese) [汪卫华2013物理学进展 33177]

    [2]

    Chen M W 2008 Annu. Rev. Mater. Res. 38445

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56379

    [4]

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 6617176112(in Chinese) [管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪2017物理学报6617176112]

    [5]

    Inoue A 2000 Acta Mater. 48279

    [6]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 632342

    [7]

    Pan J, Duan F H 2021 Acta Metall. Sin. 57439(in Chinese) [潘杰, 段峰辉2021金属学报57439]

    [8]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91045505

    [9]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 101311

    [10]

    Miracle D B 2004 Nat. Mater. 3697

    [11]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439419

    [12]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102245501

    [13]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103075502

    [14]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108175501

    [15]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 66035

    [16]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104250

    [17]

    Ding J, Patinet S, Falk M L, Cheng Y, Ma E 2014 Proc. Natl. Acad. Sci. U.S.A. 11114052

    [18]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 711516

    [19]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119215501

    [20]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 93965

    [21]

    Luo P, Cao C R, Zhu F, Lv Y M, Lv Y H, Wen P, Bai H Y, Vaughan G, Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 91389

    [22]

    Zhou J, Yan Z Z, Huang H, Que S J, Song S X, Liu H P, Ding J, Zhu F 2025 Phys. Rev. B (in press)

    [23]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 5199

    [24]

    Wagner H, Bedorf D, Küchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10439

    [25]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106125504

    [26]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 605260

    [27]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 614329

    [28]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 13911

    [29]

    Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66176109(in Chinese) [孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强2017物理学报66176109]

    [30]

    Zhang P, Maldonis J J, Liu Z, Schroers J, Voyles P M 2018 Nat. Commun. 91129

    [31]

    Gao M, Perepezko J H 2020 Nano Lett. 207558

    [32]

    Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 123843

    [33]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Crespo D 2022 Phys. Rev. Lett. 129175501

    [34]

    Feng T, Hahn H, Gleiter H 2017 Acta Phys. Sin. 66176110(in Chinese) [冯涛, Horst Hahn, Herbert Gleiter 2017物理学报66176110]

    [35]

    Elliott S R 1990 Physics of Amorphous Materials 2nd edn (London: Longman)

    [36]

    Cusack N E 2003 The Physics of Structurally Disordered Matter: An Introduction (Bristol: Adam Hilger)

    [37]

    Frank F C 1952 Proc. R. Soc. London, Ser. A 21543

    [38]

    Bernal J D 1960 Nature 18568

    [39]

    Ma E 2015 Nat. Mater. 14547

    [40]

    Nelson D R 1983 Phys. Rev. B 285515

    [41]

    Cowley J M 2002 Ultramicroscopy 90197

    [42]

    Zhu J, Cowley J M 1982 Acta Crystallogr., Sect. A: Found. Crystallogr. 38718

    [43]

    Krivanek O L, Dellby N, Lupini A R 1999 Ultramicroscopy 781

    [44]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 1028

    [45]

    Hirata A, Chen M W 2014 J. Non-Cryst. Solids 38352

    [46]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341376

    [47]

    Yang Y, Zhou J, Zhu F, Yuan Y, Chang D J, Kim D S, Miao J 2021 Nature 59260

    [48]

    Yuan Y, Kim D S, Zhou J, Chang D J, Zhu F, Nagaoka Y, Miao J 2022 Nat. Mater. 2195

    [49]

    Debenedetti P G, Stillinger F H 2001 Nature 410259

    [50]

    Johari G P 1973 J. Chem. Phys. 581766

    [51]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 532372

    [52]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)

    [53]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 883113

    [54]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1429

    [55]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 11315001

    [56]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95245501

    [57]

    Wang W H 2011 J. Appl. Phys. 110053521

    [58]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108015504

    [59]

    Johari G P 2002 J. Non-crystal. Solids 307317

    [60]

    Thayyil M S, Capaccioli S, Prevosto D, Ngai K L 2008 Philos. Mag. 884007

    [61]

    Stevenson J D, Wolynes P G 2010 Nat. Phys. 663

    [62]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109095508

    [63]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 43204

    [64]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 54328

    [65]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 5199

    [66]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 56823

    [67]

    Spaepen F 1977 Acta Metall. 25407

    [68]

    Argon A S 1979 Acta Metall. 2747

    [69]

    Langer J S 2006 Scr. Mater. 54375

    [70]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95195501

    [71]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. U.S.A. 10514769

    [72]

    Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52117(in Chinese) [ 乔吉 超, 张浪 渟, 童钰, 吕国 建, 郝奇, 陶凯 2022力 学进 展52117]

    [73]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105205502

    [74]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9619

    [75]

    Wang W H 2012 Nat. Mater. 11275

    [76]

    Patinet S, Vandembroucq D, Falk M L 2016 Phys. Rev. Lett. 117045501

    [77]

    Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O, Ma E 2016 Nat. Commun. 713733

    [78]

    Cubuk E D, Ivancic R J S, Schoenholz S S, Strickland D J, Basu A, Davidson Z S, Fontaine J, Hor J L, Huang Y R, Jiang Y, Keim N C, Koshigan K D, Lefever J A, Liu T, Ma X G, Magagnosc D J, Morrow E, Ortiz C P, Rieser J M, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom K N, Arratia P E, Carpick R W, Durian D J, Fakhraai Z, Jerolmack D J, Lee D, Li J, Riggleman R, Turner K T, Yodh A G, Gianola D S, Liu A J 2017 Science 3581033

    [79]

    Sun B A, Hu Y C, Wang D P, Zhu Z G, Wen P, Wang W H, Liu C T, Yang Y 2016 Acta Mater. 121266

    [80]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578559

    [81]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Greer A L 2015 Nature 524200

    [82]

    Ross P, Küchemann S, Derlet P M, Yu H B, Arnold W, Liaw P, Samwer K, Maaß R 2017 Acta Mater. 138111

    [83]

    Ediger M D 2017 J. Chem. Phys. 147210901

    [84]

    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ramos M A, Rodríguez-Viejo J 2022 Riv. Nuovo Cim. 45325

    [85]

    Luo P, Fakhraai Z 2023 Annu. Rev. Phys. Chem. 74361

    [86]

    Ngai K L 2023 Prog. Mater. Sci. 139101130

    [87]

    Ruiz-Ruiz M, Vila-Costa A, Bar T, Rodríguez-Tinoco C, Gonzalez-Silveira M, Plaza J A, Alcalá J, Fraxedas J, Rodriguez-Viejo J 2023 Nat. Phys. 191509

    [88]

    Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, Rodriguez-Viejo J 2023 Nat. Phys. 19114

    [89]

    Yu H B, Gao L, Gao J Q, Samwer K 2024 Natl. Sci. Rev. 11 nwae091

    [90]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315353

    [91]

    Luo P, Wolf S E, Govind S, Stephens R B, Kim D H, Chen C Y, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z 2024 Nat. Mater. 23688

    [92]

    Walters D M, Antony L, de Pablo J J, Ediger M D 2017 J. Phys. Chem. Lett. 83380

    [93]

    Ediger M D, de Pablo J, Yu L 2019 Acc. Chem. Res. 52407

    [94]

    Bagchi K, Ediger M D 2020 J. Phys. Chem. Lett. 116935

    [95]

    Raegen A N, Yin J, Zhou Q, Forrest J A 2020 Nat. Mater. 191110

    [96]

    Ràfols-Ribé J, Will P A, Hänisch C, Gonzalez-Silveira M, Lenk S, RodríguezViejo J, Reineke S 2018 Sci. Adv. 4 eaar8332

    [97]

    Guo Y, Morozov A, Schneider D, Chung J W, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11337

    [98]

    Yu H B, Luo Y, Samwer K 2013 Adv. Mater. 255904

    [99]

    Aji D P, Hirata A, Zhu F, Pan L, Reddy K M, Song S, Liu Y, Fujita T, Kohara S, Chen M W 2013 arXiv:1306.1575

    [100]

    Wang J Q, Chen N, Liu P, Wang Z, Louzguine-Luzgin D V, Chen M W, Perepezko J H 2014 Acta Mater. 7930

    [101]

    Magagnosc D J, Feng G, Yu L, Cheng X, Gianola D S 2016 APL Mater. 4086104

    [102]

    Luo P, Zhu F, Lv Y M, Lu Z, Shen L Q, Zhao R, Sun Y T, Vaughan G B, Di Michiel M, Ruta B, Bai H Y 2021 ACS Appl. Mater. Inter. 1340098

    [103]

    Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang W H 2022 Sci. Adv. 8 eabn3623

    [104]

    Zhang Z, Ding J, Ma E 2022 Proc. Natl. Acad. Sci. U.S.A. 119

  • [1] 梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超. 非晶合金高温流变行为与动力学弛豫耦合机理研究. 物理学报, doi: 10.7498/aps.74.20250392
    [2] 秦海蓉, 侯翊洁, 杨昆, 靳灿灿, 吕勇军. 非晶合金熔体中的动力学拓扑相变. 物理学报, doi: 10.7498/aps.74.20250513
    [3] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律. 物理学报, doi: 10.7498/aps.73.20232040
    [4] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响. 物理学报, doi: 10.7498/aps.73.20231417
    [5] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, doi: 10.7498/aps.73.20231421
    [6] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛. 物理学报, doi: 10.7498/aps.72.20230181
    [7] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, doi: 10.7498/aps.72.20222389
    [8] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, doi: 10.7498/aps.71.20220446
    [9] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, doi: 10.7498/aps.69.20191781
    [10] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, doi: 10.7498/aps.66.176104
    [11] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, doi: 10.7498/aps.66.176106
    [12] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, doi: 10.7498/aps.66.176113
    [13] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, doi: 10.7498/aps.66.186101
    [14] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, doi: 10.7498/aps.66.176109
    [15] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, doi: 10.7498/aps.66.176110
    [16] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, doi: 10.7498/aps.66.176112
    [17] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, doi: 10.7498/aps.66.176103
    [18] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, doi: 10.7498/aps.66.178101
    [19] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, doi: 10.7498/aps.56.999
    [20] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, doi: 10.7498/aps.54.3862
计量
  • 文章访问数:  45
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-20

/

返回文章
返回