搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金的高通量制备与表征

柳延辉

引用本文:
Citation:

非晶合金的高通量制备与表征

柳延辉

Combinatorial fabrication and high-throughput characterization of metallic glasses

Liu Yan-Hui
PDF
导出引用
  • 非晶合金是一种不同于传统合金材料的新型合金,其突出的机械、物理、化学等性能在工程应用领域备受关注.作为一种具有无序原子结构的新型合金,非晶合金中蕴含的丰富的物理现象在基础研究领域也备受瞩目.非晶合金往往由多个组元构成,这给成分优化和性能调制带来了巨大的挑战.材料基因组方法是最近发展起来的新方法,通过高通量制备和结构表征以及性能筛选有望加快新型非晶合金材料的探索,在高通量表征中获得的大量实验数据可以帮助人们理解非晶合金中的科学问题.本文主要介绍高通量制备和表征在非晶合金中的应用,通过列举典型案例,展示通过高通量方法探索新型非晶合金材料的作用.
    Metallic glasses, which exhibit outstanding mechanical, physical, and chemical properties and rich phenomena, are important technologically and fundamentally. The progress in the field of metallic glasses has largely relied on the development of new glass forming alloys. However, due to the multi-component nature of metallic glass, discovery of new alloy is slow. The fabrication combined with high-throughput characterization under the umbrella of materials genome initiative has been demonstrated to be helpful for accelerating the material discovery. In addition, the big data generated during high-throughput characterization can conduce to understanding the science behind the behaviors of various materials. In the paper, we summarize the techniques that can be used for the combinatorial fabrication of metallic glasses, and relevant approaches to realize the high-throughput characterization.
      通信作者: 柳延辉, yanhui.liu@iphy.ac.cn
      Corresponding author: Liu Yan-Hui, yanhui.liu@iphy.ac.cn
    [1]

    Schroers J, Hodges T M, Kumar G, Raman H, Barnes A J, Quoc P, Waniuk, T A 2011 Mater. Today 14 14

    [2]

    Johnson W L 2002 JOM-J. Min. Met. Mat. Soc. 54 40

    [3]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [4]

    Ding S Y, Liu Y H, Li Y L, Liu Z, Sohn S, Walker F J, Schroers J 2014 Nat. Mater. 13 494

    [5]

    Phillips C L, Littlewood P 2016 APL Mater. 4 053001

    [6]

    Takeuchi I, Lauterbach J, Fasolka M J 2005 Mater. Today 8 18

    [7]

    Hanak J J 1970 J. Mater. Sci. 5 964

    [8]

    Yoo Y K, Xue Q Z, Chu Y S, Xu S F, Hangen U, Lee H C, Stein W, Xiang X D 2006 Intermetallics 14 241

    [9]

    Wang H Z, Wang H, Ding H, Xiang X D, Xiang Y, Zhang X K 2015 Sci. Tech. Rev. 33 31 (in Chinese) [王海舟, 汪洪, 丁洪, 项晓东, 向勇, 张晓琨 2015 科技导报 33 31]

    [10]

    Hata S, Sakurai J, Yamauchi R, Shimokohbe A 2007 Appl. Surf. Sci. 254 738

    [11]

    Hata S, Yamauchi R, Sakurai J, Shimokohbe A 2006 Jpn. J. Appl. Phys. 45 2708

    [12]

    Liu Y, Padmanabhan J, Cheung B, Liu J B, Chen Z, Scanley B E, Wesolowski D, Pressley M, Broadbridge C C, Altman S, Schwarz U D, Kyriakides T R, Schroers J 2016 Sci. Rep. 6 26950

    [13]

    Li Y L, Jensen K E, Liu Y H, Liu J B, Gong P, Scanley B E, Broadbridge C C, Schroers J 2016 ACS Comb. Sci. 18 630

    [14]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238

    [15]

    Deng Y P, Guan Y, Fowkes J D, Wen S Q, Liu F X, Phaff G M, Liaw P K, Liu C T, Rack P D 2007 Intermetallics 15 1208

    [16]

    Tsai P, Flores K M 2015 Metall. Mater. Trans. A 46 3876

    [17]

    Tsai P, Flores K M 2016 Acta Mater. 120 426

    [18]

    Gregoire J M, McCluskey P J, Dale D, Ding S Y, Schroers J, Vlassak J J 2012 Scripta Mater. 66 178

    [19]

    Lee D W, Zhao B G, Perim E, Zhang H T, Gong P, Gao Y L, Liu Y H, Toher C, Curtarolo S, Schroers J, Vlassak J J 2016 Acta Mater. 121 68

    [20]

    Aono Y, Sakurai J, Ishida T, Shimokohbe A, Hata S 2010 Appl. Phys. Express 3 125601

    [21]

    Aono Y, Sakurai J, Shimokohbe A, Hata S 2011 Jpn. J. Appl. Phys. 50 055601

    [22]

    Guo Q, Noh J H, Liaw P K, Rack P D, Li Y, Thompson C V 2010 Acta Mater. 58 3633

  • [1]

    Schroers J, Hodges T M, Kumar G, Raman H, Barnes A J, Quoc P, Waniuk, T A 2011 Mater. Today 14 14

    [2]

    Johnson W L 2002 JOM-J. Min. Met. Mat. Soc. 54 40

    [3]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [4]

    Ding S Y, Liu Y H, Li Y L, Liu Z, Sohn S, Walker F J, Schroers J 2014 Nat. Mater. 13 494

    [5]

    Phillips C L, Littlewood P 2016 APL Mater. 4 053001

    [6]

    Takeuchi I, Lauterbach J, Fasolka M J 2005 Mater. Today 8 18

    [7]

    Hanak J J 1970 J. Mater. Sci. 5 964

    [8]

    Yoo Y K, Xue Q Z, Chu Y S, Xu S F, Hangen U, Lee H C, Stein W, Xiang X D 2006 Intermetallics 14 241

    [9]

    Wang H Z, Wang H, Ding H, Xiang X D, Xiang Y, Zhang X K 2015 Sci. Tech. Rev. 33 31 (in Chinese) [王海舟, 汪洪, 丁洪, 项晓东, 向勇, 张晓琨 2015 科技导报 33 31]

    [10]

    Hata S, Sakurai J, Yamauchi R, Shimokohbe A 2007 Appl. Surf. Sci. 254 738

    [11]

    Hata S, Yamauchi R, Sakurai J, Shimokohbe A 2006 Jpn. J. Appl. Phys. 45 2708

    [12]

    Liu Y, Padmanabhan J, Cheung B, Liu J B, Chen Z, Scanley B E, Wesolowski D, Pressley M, Broadbridge C C, Altman S, Schwarz U D, Kyriakides T R, Schroers J 2016 Sci. Rep. 6 26950

    [13]

    Li Y L, Jensen K E, Liu Y H, Liu J B, Gong P, Scanley B E, Broadbridge C C, Schroers J 2016 ACS Comb. Sci. 18 630

    [14]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238

    [15]

    Deng Y P, Guan Y, Fowkes J D, Wen S Q, Liu F X, Phaff G M, Liaw P K, Liu C T, Rack P D 2007 Intermetallics 15 1208

    [16]

    Tsai P, Flores K M 2015 Metall. Mater. Trans. A 46 3876

    [17]

    Tsai P, Flores K M 2016 Acta Mater. 120 426

    [18]

    Gregoire J M, McCluskey P J, Dale D, Ding S Y, Schroers J, Vlassak J J 2012 Scripta Mater. 66 178

    [19]

    Lee D W, Zhao B G, Perim E, Zhang H T, Gong P, Gao Y L, Liu Y H, Toher C, Curtarolo S, Schroers J, Vlassak J J 2016 Acta Mater. 121 68

    [20]

    Aono Y, Sakurai J, Ishida T, Shimokohbe A, Hata S 2010 Appl. Phys. Express 3 125601

    [21]

    Aono Y, Sakurai J, Shimokohbe A, Hata S 2011 Jpn. J. Appl. Phys. 50 055601

    [22]

    Guo Q, Noh J H, Liaw P K, Rack P D, Li Y, Thompson C V 2010 Acta Mater. 58 3633

  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究. 物理学报, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [4] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [5] 孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华. 非晶材料与物理近期研究进展. 物理学报, 2018, 67(12): 126101. doi: 10.7498/aps.67.20180681
    [6] 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开发. 物理学报, 2018, 67(12): 128801. doi: 10.7498/aps.67.20180657
    [7] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [8] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [9] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [10] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [11] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [12] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [13] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [14] 武振伟, 李茂枝, 徐莉梅, 汪卫华. 非晶中结构遗传性及描述. 物理学报, 2017, 66(17): 176405. doi: 10.7498/aps.66.176405
    [15] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [16] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [17] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [18] 季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪. 大口径高通量三倍频研究. 物理学报, 2011, 60(9): 094210. doi: 10.7498/aps.60.094210
    [19] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [20] 王永田, 赵作峰, 庞智勇, 刘 冉, 潘明祥, 赵德乾, 王万录, 韩宝善, 汪卫华. Pr基大块纳米晶合金及其特性研究. 物理学报, 2005, 54(6): 2838-2842. doi: 10.7498/aps.54.2838
计量
  • 文章访问数:  5467
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01
  • 修回日期:  2017-06-23
  • 刊出日期:  2017-09-05

非晶合金的高通量制备与表征

  • 1. 中国科学院物理研究所, 极端条件物理实验室, 北京 100190
  • 通信作者: 柳延辉, yanhui.liu@iphy.ac.cn

摘要: 非晶合金是一种不同于传统合金材料的新型合金,其突出的机械、物理、化学等性能在工程应用领域备受关注.作为一种具有无序原子结构的新型合金,非晶合金中蕴含的丰富的物理现象在基础研究领域也备受瞩目.非晶合金往往由多个组元构成,这给成分优化和性能调制带来了巨大的挑战.材料基因组方法是最近发展起来的新方法,通过高通量制备和结构表征以及性能筛选有望加快新型非晶合金材料的探索,在高通量表征中获得的大量实验数据可以帮助人们理解非晶合金中的科学问题.本文主要介绍高通量制备和表征在非晶合金中的应用,通过列举典型案例,展示通过高通量方法探索新型非晶合金材料的作用.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回