-
在现代电子通信、人工智能产业快速变革的浪潮中,第三代半导体的规模化应用推动着高性能高频软磁材料需求的日益增长。然而,传统软磁材料的基本性能之间存在着复杂的权衡关系,例如饱和磁化强度与矫顽力、磁导率与损耗、机械强度与矫顽力往往不能同时兼得。非晶基软磁材料以内部不同尺度序结构作为关键功能基元,催生了极其丰富的物理特性。序调控是一种通过优化序结构本征特性、序构形式来提升性能的理念,为突破软磁性能的矛盾关系开拓了新的设计维度。本文首先介绍了软磁材料的发展历程,然后阐述了序调控的科学理论基础,综述了基于序调控工程创制高性能非晶基软磁材料的最新进展,重点介绍短程序、中程序、非晶-纳米晶双相等影响宏观物性的关键序构形式对软磁性能的影响及其作用机制,最后指出了面向未来高精尖产业前沿的新一代高频软磁材料发展方向。The rapid advancement of modern electronics, telecommunications, and artificial intelligence has driven an urgent demand for high-performance soft magnetic materials, particularly those compatible with third-generation semiconductors. These semiconductors, characterized by wide bandgaps, high breakdown fields, and superior thermal conductivity, enable power devices to operate at higher frequencies (>1 MHz) and power densities. However, traditional soft magnetic materials, such as silicon steels and ferrites, face inherent trade-offs between critical properties: saturation magnetization (Bs) versus coercivity (Hc), permeability versus core loss, and mechanical strength versus magnetic "softness." These limitations hinder their application in emerging high-frequency, high-efficiency scenarios. Amorphous soft magnetic materials, with their unique hierarchical ordered structures spanning atomic to nanoscales, offer a revolutionary platform to overcome these trade-offs. These materials exhibit rich physical properties governed by short-range order (SRO, <0.5 nm), medium-range order (MRO, 0.5-2 nm), and amorphous-nanocrystalline dual-phase architectures. The concept of order modulation—strategically tailoring the intrinsic characteristics (e.g., cluster density, topological configuration) and spatial arrangements of these ordered structures—has emerged as a transformative approach to decoupling conflicting material properties. This review systematically examines the following key aspects:
1. Historical evolution of soft magnetic materials
From early silicon steels and ferrites to modern amorphous and nanocrystalline alloys, the development of soft magnetic materials has paralleled advancements in power electronics. The advent of Fe-based amorphous alloys and Finemet-type nanocrystalline alloys marked milestones in achieving high Bs (>1.6 T), ultra-low Hc (<1 A/m), and reduced core losses at high frequencies. However, performance bottlenecks persist near theoretical limits, necessitating innovative strategies.
2. Theoretical foundations of order modulation
Order parameter theory: Landau’s phase transition theory and synergetics elucidate how magnetic order parameters govern macroscopic properties. In amorphous alloys, magnetic interactions are dominated by SRO clusters and their MRO arrangements.
Magnetism-structure relationships: advanced techniques, such as atomic electron tomography (AET) and synchrotron pair distribution function (PDF) analysis, reveal that SRO/MRO structures directly influence exchange coupling, magnetic anisotropy, and domain wall dynamics. For instance, Fe-M (M = Si, B) clusters with dense packing enhance Bs, while MRO homogenization reduces Hc.
3. Advances in order-modulated amorphous soft magnetic materials
Atomic-scale modulation: elemental doping (e.g., Co, Mo, Cu) and energy-field treatments (e.g., magnetic annealing, ultrasonic vibration) optimize local atomic configurations. For example, ultrasonic processing of Fe78Si9B13 ribbons induces stress relaxation, forming 2-3 nm Fe-M clusters that boost Bs to 183.2 emu/g while maintaining Hc at 4.2 A/m.
Nanoscale dual-phase design: controlled crystallization of α-Fe(Si) nanocrystals (<15 nm) within an amorphous matrix creates exchange-coupled nanocomposites. Co-Mo co-doping in FeSiBCuNb alloys refines grain size to 11.8 nm, achieving a permeability of 65,000 at 100 kHz—44% higher than conventional Finemet alloys.
Interface engineering in soft magnetic composites (SMCs): core-shell architectures (e.g., FeSiB@FeB nanoparticles) with stress-buffering interfaces reduce eddy current losses while preserving permeability. Cold sintering of vortex-domain FeSiAl powders enables GHz-range operation with stable permeability (μi=13 at 1 GHz).
4. Future directions and challenges
Machine learning-driven design: integrating high-throughput simulations and AI models (e.g., XGBoost, random forests) accelerates the discovery of optimal compositions and order parameters. Recent work predicts Bs using Fe content, mixing enthalpy, and electronegativity differences, guiding the synthesis of (Fe82Co18)85.5Ni1.5B9P3C1 alloys with Bs =1.92 T.
Novel magnetic topologies: magnetic vortex structures and skyrmion-like configurations in ultrafine powders show promise for ultra-high-frequency applications (>100 MHz).
Low-stress manufacturing: innovations like ultrasonic rheoforming reduce compaction pressures by 99% (to 6.2 MPa), mitigating residual stress and enhancing SMC performance.
In situ characterization: neutron scattering and grating-based imaging techniques enable real-time observation of domain dynamics under operational conditions (e.g., stress, magnetic fields).
In conclusion, order modulation represents a paradigm shift in soft magnetic material design, bridging atomic-scale interactions to macroscopic performance. By leveraging multi-scale ordered structures and advanced manufacturing technologies, next-generation amorphous-based materials are poised to revolutionize high-frequency power electronics, electric vehicles, and AI-driven systems. However, challenges in scalable production, cost-effective processing, and standardized evaluation must be addressed to accelerate industrial adoption.-
Keywords:
- Soft magnetic materials /
- Amorphous alloy /
- Order modulation /
- Functional block
-
[1] Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 eaao0195
[2] Yu Q 2024 Highlights in Science, Engineering and Technology 81 484
[3] Wang H, Lamichhane T N, Paranthaman M P 2022 Mat. Today Phys. 24 100675
[4] Herzer G 2013 Acta Mater. 61 718
[5] Talaat A, Suraj M V, Byerly K, Wang A, Wang Y, Lee J K, Ohodnicki Jr P R 2021 J. Alloys Compd. 870 159500
[6] Rafin S S H, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 Micromachines 14 2045
[7] Perigo E A, Weidenfeller B, Kollár P, Füzer J 2018 Appl. Phys. Rev. 5 031301
[8] Li X S, Zhou J, Shen L Q, Sun B A, Bai H Y, Wang W H 2023 Adv. Mater. 35 2205863
[9] Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H, Bai H Y 2023 Adv. Mater. 35 2304490
[10] Oumsalem A, Bourezig Y, Nabi Z, Bouabdallah B 2018 Turk. J. Electr. Eng. Compu. Sci. 26 1249
[11] Zhang H T, Zhang T, Zhang X 2023 Adv. Sci. 10 2300193
[12] Shao L L, Luo Q, Zhang M J, Xue L, Cui J X, Yang Q Z, Ke H B, Zhang Y, Shen B L, Wang W H 2024 Nat. Commun. 15 4159
[13] Ke H B, Zhou J, Tong X, Wang W H 2024 Science and Technology Review 42 1 (柯海波, 周靖, 童星, 汪卫华 2024 科技导报 42 1)
[14] Cowley R 1980 Adv. Phys. 29 1
[15] Natarajan A R, Thomas J C, Puchala B, Van der Ven A 2017 Phys. Rev. B 96 134204
[16] Jiang Q, Wen Z, Jiang Q, Wen Z 2011 Thermodynamics of Materials (Springer) pp157-206
[17] Zhang H 2022 Models and Methods for Management Science (Springer) pp301-361
[18] Haken H 1973 Synergetics: Cooperative phenomena in multi-component systems (Springer) pp9-21
[19] Haken H 1989 Rep. Prog. Phys. 52 515
[20] Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233
[21] Zeeman E C 1976 Sci. Am. 234 65
[22] Zhang E, Zhou B, Yang L, Li C, Li P 2023 Trans. Soc. Min. Metall. Explor. 40 1865
[23] Ren J L, Yu L P, Zhang L Y 2017 Acta Phys. Sin-CH ED 66 176402 (任景莉, 于利萍, 张李盈 2017 物理学报 66 176402)
[24] Machida Y, Nakatsuji S, Onoda S, Tayama T, Sakakibara T 2010 Nature 463 210
[25] Laughlin D E 2019 Metall. Mater. Trans. A 50 2555
[26] Alonso J 2000 Chem. Rev. 100 637
[27] Filbet F, Xiong T, Sonnendrucker E 2018 SIAM J. Appl. Math. 78 1030
[28] Anderson P 1950 Phys. Rev. 79 705
[29] Stepanov E, Brener S, Krien F, Harland M, Lichtenstein A, Katsnelson M 2018 Phys. Rev. Lett. 121 037204
[30] Stöhr J, Siegmann H C 2006 Magnetism: From Fundamentals to Nanoscale Dynamics (Springer) pp479-520
[31] Hosseini M V, Askari M 2015 Phys. Rev. B 92 224435
[32] Kosarim A, Smirnov B 2005 J. Exp. Theor. Phys. 101 611
[33] Bernal J 1960 Nature 185 68
[34] Bernal J D 1959 Nature 183 141
[35] Luo W, Sheng H, Alamgir F, Bai J, He J, Ma E 2004 Phys. Rev. Lett. 92 145502
[36] Lan S, Zhu L, Wu Z, Gu L, Zhang Q, Kong H, Liu J, Song R, Liu S, Sha G, Wang Y G, Liu Q, Liu W, Wang P Y, Liu C T, Ren Y, Wang X L 2021 Nat. Mater. 20 1347
[37] Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404
[38] Ye J, Lu J, Liu C, Wang Q, Yang Y 2010 Nat. Mater. 9 619
[39] Miracle D B 2004 Nat. Mater. 3 697
[40] Sheng H, Luo W, Alamgir F, Bai J, Ma E 2006 Nature 439 419
[41] Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30
[42] Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard III W A, Greer J R 2015 Science 349 1306
[43] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M W 2011 Nat. Mater. 10 28
[44] Yang Y, Zhou J H, Zhu F, Yuan Y K, Chang D J, Kim D S, Pham M, Rana A, Tian X Z, Yao Y G, Osher S J, Schmid A K, Hu L B, Ercius P, Miao J W 2021 Nature 592 60
[45] Tang J, Xiang H P, Xu L, Qu S J, Feng A H, Li N, Ping D H 2025 Metals 15 98
[46] Ge J C, Gu Y, Yao Z Z, Liu S N, Ying H Q, Lu C Y, Wu Z D, Ren Y, Suzuki J, Xie Z H, Ke Y B, Zeng J R, Zhu H, Tang S, Wang X L, Lan S 2024 J. Mater. Sci. Technol. 176 224
[47] Bai Y W, Li J C, Zhang J, Dong B S, Li X X, Zhao X L, Cui Z H, Li T, Hu L N 2024 J. Non-Cryst. Solids 624 122705
[48] Tian H, Zhang C, Zhao J, Dong C, Wen B, Wang Q 2012 Physica B 407 250
[49] Geng Y X, Wang Y M 2020 Acta Metall. Sinica 56 1558 (耿遥祥, 王英敏 2020 金属学报 56 1558)
[50] Shi L X, Shao Y, Fan Z Y, Wang R B, Lu C Y, Yao K F 2023 Acta Mater. 254 118983
[51] Zhao C, Wang A, He A, Chang C, Liu C T 2021 Sci. China Mater. 64 1813
[52] Li H Z, Sohrabi S, Li X, Li L Y, Ma J, Peng H L, Yang C 2025 Rare Met. 44 2853
[53] Wang C, Wu Z, Feng X, Li Z, Gu Y, Zhang Y, Tan X, Xu H 2020 Intermetallics 118 106689
[54] Lu S, Wang M, Zhao Z 2023 J. Non-Cryst. Solids 616 122440
[55] Shao L L, Bai R S, Wu Y X, Zhou J, Tong X, Peng H L, Liang T, Li Z Z, Zeng Q S, Zhang B, Ke H B, Wang W H 2024 Materials Futures 3 025301
[56] Hu Y P, Ping K B, Run Z J, Yang W, Gong C W 2011 Acta Physica Sinica 60 642 (胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟 2011 物理学报 60 642)
[57] (Elsevier)
[58] (Elsevier)
[59] Li Y, Jia X, Zhang W, Zhang Y, Xie G, Qiu Z, Luan J, Jiao Z 2021 J. Mater. Sci. Technol. 65 171
[60] Xi G G, Sun C, Han M H, Li H G, Cui J L, Zhang T 2024 J. Non-Cryst. Solids 633 122951
[61] Han M H, Sun C, Xi G G, Meng Y, Luo Q, Yu X Q, Zhang W F, Liu H, Xu H J, Zhang T 2024 Rare Met. 43 5242
[62] Yoshizawa Y a, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044
[63] Li H, Wang A, Liu T, Chen P, He A, Li Q, Luan J, Liu C T 2021 Mater. Today 42 49
[64] Duan L, Wang K, Wang E, Jia P 2021 Acta Metall. Sinica (English Letters) 34 1163
[65] Jia P, Wang E G, Han K 2016 Materials 9 899
[66] Chen S F, Chen C Y, Cheng C S 2015 J. Alloys Compd. 644 17
[67] Zhou B, Dong Y, Chi Q, Zhang Y, Chang L, Gong M, Huang J, Pan Y, Wang X 2020 Ceram. Int. 46 13449
[68] Zhou B, Dong Y, Liu L, Chang L, Bi F, Wang X 2019 J. Magn. Magn. Mater. 474 1
[69] Lu S, Liu T, Wang M, Zhao Z 2025 J. Alloys Compd. 1016 178874
[70] Ma R, Chang L, Ye S, Xie H, Xiao Q, Zhang L, Si J, Yu P 2023 Powder Technol. 426 118639
[71] Bai R, Shao L, Ding H, Li X, Zhou J, Xue Z, Ke H, Wang W 2025 J. Mater. Sci. Technol. 211 82
[72] Zhou B, Chi Q, Dong Y, Liu L, Zhang Y, Chang L, Pan Y, He A, Li J, Wang X 2020 J. Magn. Magn. Mater. 494 165827
[73] Chi Q, Chang L, Dong Y, Zhang Y, Zhou B, Zhang C, Pan Y, Li Q, Li J, He A 2021 Adv. Powder Technol. 32 1602
[74] Ding H P, Gong P, Chen W, Peng Z, Bu H T, Zhang M, Tang X F, Jin J S, Deng L, Xie G Q 2023 Int. J. Plast. 169 103711
[75] Ding H P, Bao X Q, Jamili-Shirvan Z, Jin J S, Deng L, Yao K F, Gong P, Wang X Y 2021 Mater. Des. 210 110108
[76] Ding H P, Bao X Q, Zhang M, Jin J S, Deng L, Yao K F, Solouk A, Gong P, Wang X Y 2023 Adv. Powder Mater. 2 100109
[77] Yang S Y, Zang B W, Xiang M L, Shen F Y, Song L J, Gao M, Zhang Y, Huo J T, Wang J Q 2025 Adv. Funct. Mater. 2425588
[78] Yan M, Yi S B, Fan X Y, Zhang Z H, Jin J Y, Bai G H 2021 J. Mater. Sci. Technol. 79 165
[79] Li W C, Han X F, Li Q, Wu J K, Li W J, Zhan H C, Ying Y, Yu J, Zheng J W, Qiao L, Li J, Che S L 2023 J. Alloys Compd. 936 168164
[80] Bai G H, Sun J Y, Zhang Z H, Liu X L, Bandaru S, Liu W W, Li Z, Li H X, Wang N N, Zhang X F 2024 Nat. Commun. 15 2238
[81] Li H Z, Yan Y Q, Cai W S, Li L Y, Yan A, Liu L H, Ma J, Ke H B, Li Q, Sun B A, Wang W H, Yang C 2024 Nat. Commun. 15 9510
[82] Betz B, Rauscher P, Harti R, Schäfer R, Van Swygenhoven H, Kaestner A, Hovind J, Lehmann E, Grünzweig C 2016 Appl. Phys. Lett. 108 012405
[83] Reimann T, Mühlbauer S, Schulz M, Betz B, Kaestner A, Pipich V, Böni P, Grünzweig C 2015 Nat. Commun. 6 8813
[84] Strobl M, Betz B, Harti R, Hilger A, Kardjilov N, Manke I, Gruenzweig C 2016 J. Appl. Crystallogr. 49 569
[85] Weiss H A, Steentjes S, Tröber P, Leuning N, Neuwirth T, Schulz M, Hameyer K, Golle R, Volk W 2019 J. Magn. Magn. Mater. 474 643
[86] Strobl M 2014 Sci. Rep. 4 7243
[87] Grünzweig C, David C, Bunk O, Dierolf M, Frei G, Kühne G, Schäfer R, Pofahl S, Rønnow H, Pfeiffer F 2008 Appl. Phys. Lett. 93 112504
计量
- 文章访问数: 71
- PDF下载量: 9
- 被引次数: 0