搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究

刘琪 管鹏飞

引用本文:
Citation:

La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究

刘琪, 管鹏飞

First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses

Liu Qi, Guan Peng-Fei
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理分子动力学和静态电子结构计算,研究了La65X35(X=Ni,Al)非晶合金体系原子结构随温度演化的规律及其相关电子结构特性.使用径向分布函数、Voronoi团簇以及键对分析等给出了从高温液体快速冷却到玻璃态过程中原子结构的演化规律.研究发现,该类合金体系的原子排布符合局域密堆模型,两体系中占比最大的特征多面体类型由溶质与溶剂原子半径比调控;两体系中高五次对称性局域结构随温度的下降而增加验证了其在抑制晶化方面的重要作用;利用投影态密度分析两体系电子结构之间的差异,指出La-5d与Ni-3d电子间强烈的杂化是LaNi 间键长缩短的电子结构起源,为理解成分相关的结构和物性提供了重要线索.
    The atomic-level structure of metallic glasses (MGs) is one of the most fundamental and challenging topics in condensed matter physics. Unlike crystalline metals or alloys, the MGs are lacking in a well-defined description of structure order, which is a major obstruction for relating its structure to physical properties. Obviously, it is vitally important to have an in-depth understanding of the atomic packing scheme in MGs. Due to the limitations of experimental characterization methods, it is hard to obtain the atomic packing scheme of MGs in experiment. Computational simulation on an atomic scale has become an important method of characterizing the atomic structure of MGs. The La-based LaNiAl glass forming system is well-known for its good glass-forming ability, distinctive relaxation peak that is well separated from relaxation, and liquid-liquid transition at a temperature around 1000 K. Many efforts have been made to investigate these novel properties. However, the atomic structure of this system is rarely studied. In this paper, the atomic structure evolution from liquids to glass states in La-based binary MGs La65Ni35 and La65Al35 are studied via ab initio molecular dynamics based on the density functional theory. The local structures are systematically analyzed by the radical distribution function, partial radical distribution function (PRDF), Voronoi tessellation method, and bond-type method in Honeycutt-Andersen. The results indicate that the PRDF of NiNi is much weaker than that of AlAl, which indicates the NiNi avoidance in La65Ni35. The major peaks of PRDFs are always smaller than the sum of efficient radius of the two kinds of atoms, especially for LaNi pairs. Atomic structure of the two systems are coincident with dense atomic packing scheme and the difference between major Voronoi polyhedron types (0, 3, 6, 0 for La65Ni35 and 0, 2, 8, 1, 0, 2, 8, 0 for La65Al35) in local structures is controlled by their ratio of solute to solvent atomic size. The high five-fold local symmetry structure gradually increases in both systems with the decrease of temperature, which validates its pivotal part in hindering crystallization. The electronic structure is studied with the partial density of states. It is found that the significant bond-shortening between La and Ni is due to the strong hybridization between Ni-3d and La-5d electrons and this result may play a key role in understanding composition related structure and properties in MGs.
      通信作者: 管鹏飞, pguan@csrc.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB00000)、国家自然科学基金(批准号:50875132,60573172)和国家高技术研究发展计划(批准号:2011AA06Z228)资助的课题.
      Corresponding author: Guan Peng-Fei, pguan@csrc.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB00000), the National Natural Science Foundation of China (Grant Nos. 50875132, 60573172), and the National High Technology Research and Development Program of China (Grant No. 2011AA06Z228).
    [1]

    Miracle D B 2004 Nature Mater. 3 697

    [2]

    Greer A L, Ma E 2007 MRS Bull. 32 611

    [3]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese)[汪卫华 2013 物理学进展 33 177]

    [4]

    Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385

    [5]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese)[郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [6]

    Bai H Y, Tang M B, Wang W H, Wang W L, Yu P 2005 Acta Phys. Sin. 54 3284 (in Chinese)[白海洋, 汤美波, 汪卫华, 王万录, 余鹏 2005 物理学报 54 3284]

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Wei H Q, Long Z L, Xu F, Zhang P, Tang Y 2014 Acta Phys. Sin. 63 118101 (in Chinese)[危洪清, 龙志林, 许福, 张平, 唐翌 2014 物理学报 63 118101]

    [9]

    Wang W Y, Fang H Z, Shang S L, Zhang H, Wang Y, Hui X, Mathaudhu S, Liu Z K 2011 Physica B 406 3089

    [10]

    Luo W K, Sheng H W, Ma E 2006 Appl. Phys. Lett. 89 131927

    [11]

    Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008 Acta Mater. 56 6264

    [12]

    Sheng H W, Ma E, Liu H Z, Wen J 2006 Appl. Phys. Lett. 88 171906

    [13]

    Li F X, Kong J B, Li M Z 2018 Chin. Phys. B 27 056102

    [14]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [15]

    Okumura H, Chen H S, Inoue A, Masumoto T 1991 Jpn. J. Appl. Phys. 30 2553

    [16]

    Zhu Z G, Li Y Z, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K L, Wang W H 2014 J. Chem. Phys. 141 084506

    [17]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nat. Commun. 6 7696

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [21]

    Ren N N, Shang B S, Guan P F, Hu L N 2018 J. Non-Cryst. Solids 481 116

    [22]

    Finney J L 1977 Nature 266 309

    [23]

    Frank F C, Kasper J S 1958 Acta Crystallogr. 11 184

    [24]

    Miracle D B 2006 Acta Mater. 54 4317

    [25]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

  • [1]

    Miracle D B 2004 Nature Mater. 3 697

    [2]

    Greer A L, Ma E 2007 MRS Bull. 32 611

    [3]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese)[汪卫华 2013 物理学进展 33 177]

    [4]

    Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385

    [5]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese)[郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [6]

    Bai H Y, Tang M B, Wang W H, Wang W L, Yu P 2005 Acta Phys. Sin. 54 3284 (in Chinese)[白海洋, 汤美波, 汪卫华, 王万录, 余鹏 2005 物理学报 54 3284]

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Wei H Q, Long Z L, Xu F, Zhang P, Tang Y 2014 Acta Phys. Sin. 63 118101 (in Chinese)[危洪清, 龙志林, 许福, 张平, 唐翌 2014 物理学报 63 118101]

    [9]

    Wang W Y, Fang H Z, Shang S L, Zhang H, Wang Y, Hui X, Mathaudhu S, Liu Z K 2011 Physica B 406 3089

    [10]

    Luo W K, Sheng H W, Ma E 2006 Appl. Phys. Lett. 89 131927

    [11]

    Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008 Acta Mater. 56 6264

    [12]

    Sheng H W, Ma E, Liu H Z, Wen J 2006 Appl. Phys. Lett. 88 171906

    [13]

    Li F X, Kong J B, Li M Z 2018 Chin. Phys. B 27 056102

    [14]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [15]

    Okumura H, Chen H S, Inoue A, Masumoto T 1991 Jpn. J. Appl. Phys. 30 2553

    [16]

    Zhu Z G, Li Y Z, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K L, Wang W H 2014 J. Chem. Phys. 141 084506

    [17]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nat. Commun. 6 7696

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [21]

    Ren N N, Shang B S, Guan P F, Hu L N 2018 J. Non-Cryst. Solids 481 116

    [22]

    Finney J L 1977 Nature 266 309

    [23]

    Frank F C, Kasper J S 1958 Acta Crystallogr. 11 184

    [24]

    Miracle D B 2006 Acta Mater. 54 4317

    [25]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [4] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [5] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [6] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [7] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [8] 郭古青, 杨亮, 张国庆. Zr48Cu45Al7大块金属玻璃的原子结构研究. 物理学报, 2011, 60(1): 016103. doi: 10.7498/aps.60.016103
    [9] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [10] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [11] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [12] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [15] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [16] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究. 物理学报, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算. 物理学报, 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
    [20] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算. 物理学报, 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
计量
  • 文章访问数:  2707
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-22
  • 修回日期:  2018-06-03
  • 刊出日期:  2018-09-05

La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究

  • 1. 北京计算科学研究中心, 材料与能源研究部, 北京 100193
  • 通信作者: 管鹏飞, pguan@csrc.ac.cn
    基金项目: 国家重点基础研究发展计划(批准号:2011CB00000)、国家自然科学基金(批准号:50875132,60573172)和国家高技术研究发展计划(批准号:2011AA06Z228)资助的课题.

摘要: 运用基于密度泛函理论的第一性原理分子动力学和静态电子结构计算,研究了La65X35(X=Ni,Al)非晶合金体系原子结构随温度演化的规律及其相关电子结构特性.使用径向分布函数、Voronoi团簇以及键对分析等给出了从高温液体快速冷却到玻璃态过程中原子结构的演化规律.研究发现,该类合金体系的原子排布符合局域密堆模型,两体系中占比最大的特征多面体类型由溶质与溶剂原子半径比调控;两体系中高五次对称性局域结构随温度的下降而增加验证了其在抑制晶化方面的重要作用;利用投影态密度分析两体系电子结构之间的差异,指出La-5d与Ni-3d电子间强烈的杂化是LaNi 间键长缩短的电子结构起源,为理解成分相关的结构和物性提供了重要线索.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回