搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算

严志 方诚 王芳 许小红

引用本文:
Citation:

过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算

严志, 方诚, 王芳, 许小红

First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements

Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong
PDF
HTML
导出引用
  • 在稀土永磁材料中, Sm-Co基合金具有优异的高温磁性能, 是目前最有发展前景的永磁材料. 然而, 这些合金在高温环境的实际应用中, 由于其相对较低的饱和磁化强度和结构稳定性而受到限制. 本研究采用Fe, Ni, Cu, Zr作为代表的过渡金属元素, 通过第一性原理计算, 研究掺杂元素对SmCo3合金结构稳定性、磁性能和电子结构的影响. 计算结果表明, 元素Ni, Cu和Fe的掺杂有利于提升SmCo3体系结构稳定性, 而元素Zr的掺杂不利于体系结构稳定性. 磁性能计算表明, 掺杂非磁性元素在一定程度上会降低SmCo3体系的总磁矩, 而掺杂磁性元素可以增大SmCo3体系的总磁矩, 在SmCo3体系中并不是掺杂所有的磁性元素都可以增大体系总磁矩, 并通过电子结构的分析阐明了其微观机制. 最后筛选出了过渡元素Fe有利于提升SmCo3的磁性能和结构稳定性, 并在其原胞中掺杂原子百分比为0—22.22%范围内, 预测了其最佳掺杂原子百分比为18.52%.
    Among the spectra of rare-earth permanent magnetic materials, the Sm-Co-based alloys stand out with their excellent magnetic properties in high-temperature environments. However, the practical applications of these alloys in high-temperature settings face constraints due to their comparatively lower saturation magnetization and structural stability. In this study, Fe, Ni, Cu, and Zr are used as representative transition metal elements to investigate the effects of doping elements on the structural stability, magnetic properties, and electronic structure of SmCo3 alloy by first-principles calculations. The findings indicate that the doping of elements Ni, Cu, and Fe contributes positively to enhancing the structural stability of the SmCo3, while the introduction of Zr element has an adverse effect. Magnetic property calculations reveal that the incorporation of non-magnetic elements leads the total magnetic moment of the SmCo3 to decrease to a certain extent, whereas the introduction of magnetic elements can enhance the total magnetic moment. Notably, not all doped magnetic elements in the SmCo3 result in an increasing total magnetic moment. The underlying microscopic mechanisms are elucidated through electronic structure analysis. Finally, it is screened out that the transition element Fe is beneficial to improving the magnetic properties and structural stability of SmCo3, and the doping concentration (atomic percentage) in its unit cell ranges from 0 to 22.22%, the optimal doping concentration (atomic percentage) is predicted to be 18.52%.
      通信作者: 严志, yanzhi@sxnu.edu.cn ; 许小红, xuxh@sxnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3505301)、国家自然科学基金(批准号: 12304148)、山西省自然科学基金(批准号: 202203021222219)和中国博士后科学基金(批准号: 2023M731452)资助的课题.
      Corresponding author: Yan Zhi, yanzhi@sxnu.edu.cn ; Xu Xiao-Hong, xuxh@sxnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3505301), the National Natural Science Foundation of China (Grant No. 12304148), the Natural Science Foundation of Shanxi Province, China (Grant No. 202203021222219), and the China Postdoctoral Science Foundation (Grant No. 2023M731452).
    [1]

    Guo Z H, Pan W, Li W 2006 J. Magn. Magn. Mater. 303 396Google Scholar

    [2]

    张杨, 宋晓艳, 徐文武, 张哲旭 2012 物理学报 61 016102Google Scholar

    Zhang Y, Song X Y, Xu W W, Zhang Z X 2012 Acta Phys. Sin. 61 016102Google Scholar

    [3]

    Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [4]

    周相龙, 袁涛, 宋欣, 贾文涛, 马天宇 2020 中国材料进展 39 384Google Scholar

    Zhou X L, Yuan T, Song X, Jia W T, Ma T Y 2020 Mater. China 39 384Google Scholar

    [5]

    张昌文, 李华, 董建敏, 王永娟, 潘凤春, 郭永权, 李卫 2005 物理学报 54 1814Google Scholar

    Zhang C W, Li H, Dong J M, Wang Y J, Pan F C, Guo Y Q, Li W 2005 Acta Phys. Sin. 54 1814Google Scholar

    [6]

    Xue Z Q, Liu L, Liu Z, Li M, Lee D, Chen R J, Guo Y Q, Yan A R 2016 Scr. Mater. 113 226Google Scholar

    [7]

    Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967 J. Appl. Phys. 38 1001Google Scholar

    [8]

    Streever R L 1979 Phys. Rev. B. 19 2704Google Scholar

    [9]

    Buschow K H J, Van der Goot A S 1968 J. Less Common Met. 14 323Google Scholar

    [10]

    Gaidukova I Y, Granovsky S A, Markosyan A S, Rodimin V E 2006 J. Magn. Magn. Mater. 301 124Google Scholar

    [11]

    Saito T, Nishio-Hamane D 2014 J. Alloys Compd. 585 423Google Scholar

    [12]

    Guo K, Lü H, Xu G J, Liu D, Wang H B, Liu X M, Song X Y 2022 Mater. Today Chem. 25 100983Google Scholar

    [13]

    Mao F, Lü H, Liu D, Guo K, Tang F W, Song X Y 2019 J. Alloys Compd. 810 151888Google Scholar

    [14]

    毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳 2021 金属学报 57 948Google Scholar

    Mao F, Lü H, Tang F W, Guo K, Song X Y 2021 Acta. Metall. Sin. 57 948Google Scholar

    [15]

    Guo K, Lu H, Mao F, Liu D, Tang F W, Wang H B, Song X Y 2020 Nanoscale 12 5567Google Scholar

    [16]

    Wang D, Liu D, Hou C, Wang H B, Liu X, Song X Y 2017 J. Alloys Compd. 717 93Google Scholar

    [17]

    Das B, Choudhary R, Skomski R, Balasubramanian B, Pathak A K, Paudyal D, Sellmyer D J 2019 Phys. Rev. B 100 024419Google Scholar

    [18]

    Liu X B, Altounian Z 2011 Comput. Mater. Sci. 50 841

    [19]

    Landa A, Söderlind P, Parker D, Åberg D, Lordi V, Perron A, Turchi P E A, Chouhan R K, Paudyal D, Lograsso T A 2018 J. Alloys Compd. 765 659Google Scholar

    [20]

    Antonioua E, Semprosa G, Gjokab M, Sarafidisa C, Polatogloua H M, Kioseogloua J 2021 J. Alloys Compd. 882 160699Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B. 50 17953Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [27]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [28]

    Van der Marel D, Sawatzky G A 1988 Phys. Rev. B 37 10674Google Scholar

    [29]

    Zhang Z F, Guo Y Z, Robertson J 2020 Phys. Rev. Mater. 4 054603Google Scholar

    [30]

    Brooks M S S, Eriksson O, Wills J M, Johansson B 1997 Phys. Rev. Lett. 79 2546

    [31]

    Georg K, Martijn M, Jurgen F 2018 User Manual for VASP Version 5.4

    [32]

    Liu B J, Wang H, Xu C, Liu X P, Zhang Q F, Zhan T L, Stamenov P, Coey J M D, Jiang C B 2020 Phys. Rev. Mater. 4 044406Google Scholar

    [33]

    Söderlind P, Landa A, Locht I L, Åberg D, Kvashnin Y, Pereiro M, Däne M, Turchi P E A, Antropov V P, Eriksson O 2017 Phys. Rev. B 96 100404Google Scholar

    [34]

    Raja A, Adhikary T, Al-Omari I A, Das G P, Ghosh S, Satapathy D K, Oraon A, Shield J E, Aich S 2020 J. Magn. Magn. Mater. 504 166645Google Scholar

  • 图 1  (a) SmCo3的晶体结构和Sm9Co26M晶体结构中M占据(b) 3b, (c) 6c和(d) 18h晶格位置

    Fig. 1.  Crystal structures of SmCo3 (a) and Sm9Co26M with M occupied (b) 3b site, (c) 6c and (d) 18h site.

    图 2  掺杂元素在3b, 6c和18h位置的替代能, 插图表示不同元素在优先占位的Sm9Co26M的替代能; 插图中红色虚线表示未掺杂SmCo3的基态能量, 其替代能为0作为参考值

    Fig. 2.  Substitution energy of the doping element at 3b, 6c and 18h sites, the insert shows the substitution energy of Sm9Co26M with different elements at the preferential site. The red dashed line in the illustration represents the ground state energy of undoped SmCo3, and its substitution energy is 0 eV as a reference value.

    图 3  (001)面上(a) SmCo3和(b)—(e) Sm9Co26M (M = Fe, Ni, Cu, Zr)的差分电荷密度; 红色表示电荷的积累, 蓝色表示电荷的损耗

    Fig. 3.  Difference charge density of (a) SmCo3 and (b)—(e) Sm9Co26M (M = Fe, Ni, Cu, Zr) on (001) plane; the red indicates enrichment of electrons , blue indicates loss of electrons.

    图 4  SmCo3和Sm9Co26M (M = Fe, Ni, Cu, Zr)的总磁矩; 红色虚线表示未掺杂SmCo3体系的总磁矩为38.74 μB

    Fig. 4.  Total magnetic moments of SmCo3 and Sm9Co26M (M = Fe, Ni, Cu, Zr); the red dotted line indicates that the total magnetic moment of the undoped SmCo3 system is 38.74 μB.

    图 5  未掺杂体系中Co原子和掺杂体系中掺杂原子M在18h晶格位置的PDOS

    Fig. 5.  PDOS of Co atom in undoped system and doped atom M in different doped systems at 18h lattice position.

    图 6  Sm9Co26M (M = Fe, Ni, Cu, Zr)合金的替代能和总磁矩

    Fig. 6.  Substitution energy and total magnetic moment of the Sm9Co26M (M = Fe, Ni, Cu, Zr) alloys.

    图 7  SmCo3–xMx (M = Fe (a), Ni (b), Cu (c), Zr (d))体系替代能和体系总磁矩随掺杂浓度的变化

    Fig. 7.  Relationship between the substitution energy and total magnetic moment of SmCo3–xMx (M = Fe (a), Ni (b), Cu (c), Zr (d) system with doping concentration.

    表 1  SmCo3和Sm9Co26M的晶格参数和晶胞体积

    Table 1.  Lattice parameters and cell volumes of SmCo3 and Sm9Co26M.

    ModelLattice parameter/Åc/aV3
    abc
    SmCo35.01235.012324.64244.9164536.17
    Experiments[10]5.0505.05024.5904.8693543.09
    Sm9Co26Ni4.98524.985224.59624.9338536.76
    Sm9Co26Fe5.04285.042824.67714.8935537.62
    Sm9Co26Cu4.97934.979324.59674.9398538.11
    Sm9Co26Zr5.06705.067024.83974.9022548.71
    下载: 导出CSV
  • [1]

    Guo Z H, Pan W, Li W 2006 J. Magn. Magn. Mater. 303 396Google Scholar

    [2]

    张杨, 宋晓艳, 徐文武, 张哲旭 2012 物理学报 61 016102Google Scholar

    Zhang Y, Song X Y, Xu W W, Zhang Z X 2012 Acta Phys. Sin. 61 016102Google Scholar

    [3]

    Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [4]

    周相龙, 袁涛, 宋欣, 贾文涛, 马天宇 2020 中国材料进展 39 384Google Scholar

    Zhou X L, Yuan T, Song X, Jia W T, Ma T Y 2020 Mater. China 39 384Google Scholar

    [5]

    张昌文, 李华, 董建敏, 王永娟, 潘凤春, 郭永权, 李卫 2005 物理学报 54 1814Google Scholar

    Zhang C W, Li H, Dong J M, Wang Y J, Pan F C, Guo Y Q, Li W 2005 Acta Phys. Sin. 54 1814Google Scholar

    [6]

    Xue Z Q, Liu L, Liu Z, Li M, Lee D, Chen R J, Guo Y Q, Yan A R 2016 Scr. Mater. 113 226Google Scholar

    [7]

    Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967 J. Appl. Phys. 38 1001Google Scholar

    [8]

    Streever R L 1979 Phys. Rev. B. 19 2704Google Scholar

    [9]

    Buschow K H J, Van der Goot A S 1968 J. Less Common Met. 14 323Google Scholar

    [10]

    Gaidukova I Y, Granovsky S A, Markosyan A S, Rodimin V E 2006 J. Magn. Magn. Mater. 301 124Google Scholar

    [11]

    Saito T, Nishio-Hamane D 2014 J. Alloys Compd. 585 423Google Scholar

    [12]

    Guo K, Lü H, Xu G J, Liu D, Wang H B, Liu X M, Song X Y 2022 Mater. Today Chem. 25 100983Google Scholar

    [13]

    Mao F, Lü H, Liu D, Guo K, Tang F W, Song X Y 2019 J. Alloys Compd. 810 151888Google Scholar

    [14]

    毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳 2021 金属学报 57 948Google Scholar

    Mao F, Lü H, Tang F W, Guo K, Song X Y 2021 Acta. Metall. Sin. 57 948Google Scholar

    [15]

    Guo K, Lu H, Mao F, Liu D, Tang F W, Wang H B, Song X Y 2020 Nanoscale 12 5567Google Scholar

    [16]

    Wang D, Liu D, Hou C, Wang H B, Liu X, Song X Y 2017 J. Alloys Compd. 717 93Google Scholar

    [17]

    Das B, Choudhary R, Skomski R, Balasubramanian B, Pathak A K, Paudyal D, Sellmyer D J 2019 Phys. Rev. B 100 024419Google Scholar

    [18]

    Liu X B, Altounian Z 2011 Comput. Mater. Sci. 50 841

    [19]

    Landa A, Söderlind P, Parker D, Åberg D, Lordi V, Perron A, Turchi P E A, Chouhan R K, Paudyal D, Lograsso T A 2018 J. Alloys Compd. 765 659Google Scholar

    [20]

    Antonioua E, Semprosa G, Gjokab M, Sarafidisa C, Polatogloua H M, Kioseogloua J 2021 J. Alloys Compd. 882 160699Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B. 50 17953Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [27]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [28]

    Van der Marel D, Sawatzky G A 1988 Phys. Rev. B 37 10674Google Scholar

    [29]

    Zhang Z F, Guo Y Z, Robertson J 2020 Phys. Rev. Mater. 4 054603Google Scholar

    [30]

    Brooks M S S, Eriksson O, Wills J M, Johansson B 1997 Phys. Rev. Lett. 79 2546

    [31]

    Georg K, Martijn M, Jurgen F 2018 User Manual for VASP Version 5.4

    [32]

    Liu B J, Wang H, Xu C, Liu X P, Zhang Q F, Zhan T L, Stamenov P, Coey J M D, Jiang C B 2020 Phys. Rev. Mater. 4 044406Google Scholar

    [33]

    Söderlind P, Landa A, Locht I L, Åberg D, Kvashnin Y, Pereiro M, Däne M, Turchi P E A, Antropov V P, Eriksson O 2017 Phys. Rev. B 96 100404Google Scholar

    [34]

    Raja A, Adhikary T, Al-Omari I A, Das G P, Ghosh S, Satapathy D K, Oraon A, Shield J E, Aich S 2020 J. Magn. Magn. Mater. 504 166645Google Scholar

  • [1] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [2] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [3] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [5] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [6] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [7] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [8] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [10] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [11] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [12] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [14] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [15] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [16] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [18] 张晖, 刘拥军, 潘丽华, 张瑜. Co掺杂BiFeO3的第一性原理研究. 物理学报, 2009, 58(10): 7141-7146. doi: 10.7498/aps.58.7141
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  2880
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-10-30
  • 上网日期:  2023-11-02
  • 刊出日期:  2024-02-05

/

返回文章
返回