搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca-Co(Zn)共掺杂对M型锶铁氧体性能影响的第一性原理计算研究

李昕语 侯育花 陈璇 黄有林 李伟 陶小马

引用本文:
Citation:

Ca-Co(Zn)共掺杂对M型锶铁氧体性能影响的第一性原理计算研究

李昕语, 侯育花, 陈璇, 黄有林, 李伟, 陶小马

Firstprinciplestudyof effects of Ca-Co (Zn) co-doping on properties of M-type strontium ferrite

LI Xinyu, HOU Yuhua, CHEN Xuan, HUANG Youlin, LI Wei, TAO Xiaoma
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 六角晶系磁铅石型(M型)锶铁氧体因其独特的磁性、介电性能和热稳定性, 在永磁材料领域备受关注. 但相比于稀土永磁Nd2Fe14B材料来说, M型锶铁氧体(SrFe12O19)永磁材料的综合磁性能较低, 这极大地限制了其使用范围. 本文基于密度泛函理论的第一性原理计算方法, 结合广义梯度近似(GGA+U), 系统研究了Ca-Co(Zn)共掺杂对M型锶铁氧体的电子结构、力学性能、导电性和磁性能的影响. 计算结果表明, Ca-Co(Zn)共掺杂SrFe12O19铁氧体均具有良好的结构稳定性和力学性能. Ca-Zn共掺杂可以使体系导电性增强, 这是因为二价Zn离子取代了4f1晶位的三价Fe离子. 同时, Ca-Co(Zn)共掺杂使体系的总磁矩增大, 磁晶各向异性能下降, 但相比于Co和Zn单掺杂体系, 磁晶各向异性能有所改善. 这表明, Ca-Co(Zn)共掺杂能够有效地提高M型锶铁氧体的磁性能, 并具备节约成本和环保的优点.
    M-type strontium ferrite has attracted widespread attention in the field of permanent magnet materials due to its unique magnetic properties, dielectric performance, and thermal stability. However, compared with rare-earth permanent magnets such as Nd2Fe14B, strontium ferrite (SrFe12O19) permanent magnets possess relatively low comprehensive magnetic properties, which limits their application range. The effects of Ca-Co (Zn) doping on the electronic structure, mechanical properties, and magnetic properties of M-type strontium ferrite are systematically investigated by first-principles plane-wave pseudopotential method based on density functional theory (DFT), combined with the generalized gradient approximation (GGA + U) in thiswork. The calculation results indicate that the Ca-Co (Zn) co-doped M-type strontium ferrite systems exhibit good structural stability and mechanical properties. In the Ca-Zn co-doped structures, the conductivity of the system is enhanced because of the substitution of divalent Zn ionsfortrivalent Fe ions at the 4f1 site. The Ca-Co (Zn) co-doping increases the total magnetic moment of the system, while the magnetocrystalline anisotropy energy decreases. However, compared with the single Codoped systemand singleZn doped system, theCo-Znco-doped systemhas themagnetocrystalline anisotropy energy improved, indicating that Ca-Co (Zn) co-doping can effectively enhance the magnetic properties of strontium ferrite. In thiswork, the mechanisms of the effects of Ca-Co and Ca-Zn co-doping on the magnetocrystalline anisotropy energy of strontium ferriteare also analyzed. The results indicate that the decrease ofmagnetocrystalline anisotropy energy in the Ca-Co co-doped system is mainly due to the effects of dxy and ${\mathrm{d}}_x^2 $-${_y} ^2 $ orbital electrons of Co3+ ion and dxy and ${\mathrm{d}}_x^2 $-${_y} ^2 $ orbital electrons of Fe ions at the 2b site. In the Ca-Zn co-doped system, the reduction is mainly influenced by Fe-3d orbitals at the 4f1 site, while the dxy and ${\mathrm{d}}_x^2 $-${_y} ^2 $ orbital electrons of the 2b site enhance the magnetocrystalline anisotropy energy of the system. These results provide theoretical guidance for modifyingM-type strontium ferritein future.
  • 图 1  (a) M型SrFe12O19的晶体结构模型; (b) M型SrFe12O19晶胞模型中Fe离子的自旋取向

    Fig. 1.  (a) 3D structural model of M-type strontium ferrite; (b) spin orientation of Fe ions depicted in M-type SrFe12O19.

    图 2  Sr铁氧体及Ca-Co(Zn)共掺杂结构的TDOS及Fe-3d和O-2p分波态密度 (a) Sr铁氧体; (b) Ca-Co-Sr铁氧体; (c) Ca-Zn-Sr铁氧体

    Fig. 2.  TDOS and PDOS of Fe-3d and O-2pfor Sr ferrite and Ca-Co (Zn) co-doped structures: (a) Sr ferrite; (b) Ca-Co-Srferrite; (c) Ca-Zn-Sr ferrite.

    图 3  Ca-Co-Sr铁氧体的分波态密度 (a)不同晶位处Fe-3d; (b) Co-3d

    Fig. 3.  PDOS of Ca-Co-Sr ferrite: (a) Fe-3d at different sites; (b) Co-3d.

    图 4  Ca-Zn-Sr铁氧体中不同晶位处Fe离子态密度以及Zn离子3d轨道分波态密度 (a) Fe离子; (b) Zn离子

    Fig. 4.  DOS of Fe ions at different sites and the PDOS of 3d electrons of Zn ion in Ca-Zn-Sr ferrites: (a) Fe ions; (b) Zn ion.

    图 5  Ca-Co-Sr铁氧体Co离子分别沿[001]和[100]轴向磁化后的轨道态密度 (a) dxy; (b) $ {{\mathrm{d}}}_{z}^{2} $; (c) dyz; (d)dxz; (e) ${\mathrm{d}}_x^2 $-y2

    Fig. 5.  Orbital density of states of Co ion in Ca-Co-Sr ferrite magnetized along the [001] and[100] axes: (a) dxy; (b) $ {{\mathrm{d}}}_{z}^{2} $; (c) dyz; (d) dxz; (e) ${\mathrm{d}}_x^2 $-y2.

    图 6  Ca-Co-Sr铁氧体2b晶位Fe离子分别沿[001]和[100]轴向磁化的轨道态密度 (a) dxy; (b) $ {{\mathrm{d}}}_{z}^{2} $; (c) dyz; (d) dxz; (e)${\mathrm{d}}_x^2 $-y2

    Fig. 6.  Orbital density of states for Fe ions at the 2b site in Ca-Co-Sr ferrite magnetized along the [001] and [100] axes, respectively: (a) dxy; (b) $ {{\mathrm{d}}}_{z}^{2} $; (c) dyz; (d) dxz; (e) ${\mathrm{d}}_x^2 $-y2.

    图 7  Ca-Zn-Sr铁氧体2b和4f1晶位处Fe离子分别沿[001]和[100]轴向磁化的分波态密度 (a) 2b; (b) 4f1

    Fig. 7.  PDOS for Fe ions at the 2b site and 4f1site in Ca-Zn-Sr ferrite magnetized along the [001]and[100] axes: (a) 2b;(b) 4f1.

    图 8  Ca-Zn-Sr铁氧体2b晶位处Fe离子分别沿[001]和[100]轴向磁化的轨道态密度 (a) dxy; (b) dxz; (c) dyz; (d) $ {{\mathrm{d}}}_{z}^{2} $; (e) ${\mathrm{d}}_x^2 $-y2

    Fig. 8.  Orbital density of states for Fe ions at the 2b site in Ca-Zn-Sr ferrite magnetized along the [001]and[100] axes: (a) dxy; (b) dxz; (c) dyz; (d) $ {{\mathrm{d}}}_{z}^{2} $; (e) ${\mathrm{d}}_x^2 $-y2.

    表 1  Sr铁氧体、Co、Zn单掺杂以及Ca-Co(Zn)共掺杂体系的晶格参数、c/a

    Table 1.  Lattice parameters and c/a values for Sr ferrite, single doping with Co or Zn, and co-doping withCa-Co (Zn).

    体系acc/a
    Sr铁氧体5.8523.093.94
    Co-Sr铁氧体5.8423.053.95
    Zn-Sr铁氧体5.8022.943.96
    Ca-Co-Sr铁氧体5.8523.103.95
    Ca-Zn-Sr铁氧体5.8122.943.95
    下载: 导出CSV

    表 2  Sr铁氧体、Co、Zn单掺杂及Ca-Co(Zn)共掺杂体系的弹性常数和力学参数

    Table 2.  Elastic constants and mechanical parameters for Sr ferrite, single doping with Co or Zn, and co-doping with Ca-Co (Zn).

    体系C11C12C13C33C44B/GPaG/GPaB/GνE/GPa
    Sr铁氧体31115811628070186772.430.32202
    Co-Sr铁氧体28716311025936167662.510.32176
    Zn-Sr铁氧体36316813328073205822.500.32217
    Ca-Co-Sr铁氧体456103179159107188802.370.32208
    Ca-Zn-Sr铁氧体34716312825876199832.400.32218
    下载: 导出CSV

    表 3  Sr铁氧体及掺杂体系各离子及总磁晶各向异性能 (单位: meV)

    Table 3.  Magnetocrystalline anisotropy energies (unit: meV) of ionsand the total for Sr ferrite and doped systems.

    晶位Co(4f2)Zn(4f1)Fe(2a)Fe(2b)Fe(4f1)Fe(4f2)Fe(12k)Total
    $ {\text{E}}_{\text{Sr}}^{\text{MAC}} $0.0070.872–0.086–0.0420.4660.830
    $ {\text{E}}_{\text{Co-Sr}}^{\text{MAC}} $–2.3770.0100.406–0.069–0.0840.0670.257
    $ {\text{E}}_{\text{Zn-Sr}}^{\text{MAC}} $0.0000.1890.381–1.031–0.0350.0580.308
    $ {\text{E}}_{\text{Ca-Co-Sr}}^{\text{MAC}} $–2.3290.0010.397–0.046–0.0810.0580.370
    $ {\text{E}}_{\text{Ca-Zn-Sr}}^{\text{MAC}} $–0.0150.0400.225–0.280–0.0170.0370.490
    下载: 导出CSV

    表 4  Sr铁氧体中各晶位Fe离子沿c轴方向轨道磁矩值(单位: μB)

    Table 4.  Orbital magnetic moment (unit: μB) of Fe ions at different sites in Sr ferrite along the c-axis.

    晶位Fe(2a)Fe(2b)Fe(4f1)Fe(4f2)Fe(12k)Total
    p轨道0.0000.001–0.002–0.0010.0000.021
    d轨道0.0010.015–0.012–0.0100.0110.113
    总磁矩0.0010.016–0.014–0.0110.0110.135
    下载: 导出CSV

    表 5  Ca-Co-Sr铁氧体中各离子沿c轴方向的平均轨道磁矩值(单位: μB)

    Table 5.  Average orbital magnetic moment (unit: μB) of each ion in Ca-Co-Sr ferrite along the c-axis.

    晶位Co(4f2)Fe(2a)Fe(2b)Fe(4f1)Fe(4f2)Fe(12k)Total
    p轨道–0.0010.0000.001–0.002–0.0010.0000.015
    d轨道–0.0330.0120.015–0.012–0.0100.0110.096
    总磁矩–0.0330.0120.016–0.014–0.0110.0110.111
    下载: 导出CSV

    表 6  Ca-Zn-Sr铁氧体各离子沿c轴方向的平均轨道磁矩(单位: μB)

    Table 6.  Average orbital magnetic moment (unit: μB) of each ion in Ca-Zn-Sr ferrite along the c-axis.

    晶位Zn(4f1)Fe(2a)Fe(2b)Fe(4f1)Fe(4f2)Fe(12k)Total
    p轨道0.0000.0000.0000.0000.0000.0000.020
    d轨道0.0000.0110.015–0.017–0.0120.0110.099
    总磁矩–0.0010.0110.015–0.017–0.0120.0110.119
    下载: 导出CSV
  • [1]

    Hu J W, Wu Y X, He J Y, Liu Z W 2023 Eng. Anal. Boundary Elem. 156 144Google Scholar

    [2]

    Hu Z M, Stenning G B G, Koval V, Wu J Y, Yang B, Leavesley A, Wylde R, Reece M J, Jia C L, Yan H X 2022 ACS Appl. Mater. Interfaces 14 46123Google Scholar

    [3]

    Vidal J V, Fonte T, Lopes L S, Bernardo R, Carneiro P, Pires D G, Dos Santos M S 2024 Appl. Energy 376 124302Google Scholar

    [4]

    Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294Google Scholar

    [5]

    Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [6]

    Pullar RC 2012 Prog. Mater Sci. 57 1191Google Scholar

    [7]

    Fernández C, Sangregorio C, Figuera J, Belec B, Makovec D, Quesada A 2021 J. Phys. D: Appl. Phys. 54 153001

    [8]

    Granados-Miralles C, Jenu P 2021 J. Phys. D: Appl. Phys. 54 303001Google Scholar

    [9]

    Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294Google Scholar

    [10]

    Díaz-Pardo R, Bierlich S, Töpfer J, Monjaras R V 2016 AIP Adv. 6 1191

    [11]

    Luo H, Rai B K, Mishra S R, Nguyen V V, Liu J P 2012 J. Magn. Magn. Mater. 324 2602Google Scholar

    [12]

    Huang F, Liu X, Niu X, Ma Y, Huang X, Lü F, Feng S, Zhang Z 2015 Mater. Technol. 30 301Google Scholar

    [13]

    Anantharamaiah P N, Chandra N S, Shashanka H M, Kumar R, Sahoo B 2020 Adv. Powder Technol. 31 2385Google Scholar

    [14]

    Ashiq M N, Iqbal M, Najam-Ul-Haq M, Gomez P, Qureshi A M 2012 J. Magn. Magn. Mater. 324 15Google Scholar

    [15]

    Zhang W J, Bai Y, Han X, Wang L, Lu X F, Qiao L J 2013 J. Alloys Compd. 546 234Google Scholar

    [16]

    Zhou Z P, Wang Z Y, Wang X T, Li Q, Jin M, Xu J Y 2015 J. Supercond. Novel Magn. 28 1773Google Scholar

    [17]

    Nguyen H H, Tran N, Phan T L, Yang D S, Dang N T, Lee B W 2020 Ceram. Int. 46 19506Google Scholar

    [18]

    Nguyen H H, Jeong W H, Phan T L, Lee B W, Yang D S, Tran N, Dang N T 2021 J. Magn. Magn. Mater. 537 168

    [19]

    Hu C X, Cao H L, Wang S Y, Wu N N, Qiu S, Lyu H L, Li J R 2017 New J. Chem. 41 6427Google Scholar

    [20]

    Tuyen N L, Hue N T, Tho P T, Toan H N, Xuan C T A, Dang N V, Ho T A, Tuan N Q, Tran N 2024 J. Sci. : Adv. Mater. Devices 9 2468

    [21]

    Li X, Yang W G, Bao D X, Meng X D, Lou B Y, Yang W G, Bao D X, Meng X D, Lou B Y 2013 J. Magn. Magn. Mater. 329 1Google Scholar

    [22]

    Anbarasu V, Gazzali P MM, Karthik T, Manigandan A, Sivakumar K 2013 J. Mater. Sci. -Mater. Electron. 24 916Google Scholar

    [23]

    Patel C D, Dhruv P N, Meena S S, Singh C, Kavita S, Ellouze M, Jotania R B 2020 Ceram. Int. 46 24816Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Hou Y H, Chen X, Guo X L, Li W, Huang Y L, Tao X M 2021 J. Magn. Magn. Mater. 538 168257Google Scholar

    [28]

    Fei Z, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [29]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [30]

    Abdelouahed S, Alouani M 2009 Phys. Rev. B 79 054406Google Scholar

    [31]

    李荫远, 李国栋 1978 铁氧体物理学(第一版) (北京: 科学出版社) 第34—36页

    Li Y Y, Li G D 1978 Ferrite Physics (1st Ed. ) (Beijing: Science Press) pp34—36

    [32]

    Fang C M, Kools F, Metselaar R, WithG D, Groot R A D 2003 J. Phys. Condens. Matter 15 6229Google Scholar

    [33]

    Nemrava S, Vinnik D A, Hu Z, Valldor M, Kuo C Y, Zherebtsov A D, Gudkova S A, Chen C T, Tjeng L H, Niewa R 2017 Inorg. Chem. 56 3861Google Scholar

    [34]

    Bavarsiha F, Montazeri-Pour M, Rajabi M 2020 J. Inorg. Organomet. Polym. Mater. 30 2386Google Scholar

    [35]

    Zhang Z Y, Liu X, Wang X J, Wu Y P, Li R 2012 J. Alloys Compd. 525 114Google Scholar

    [36]

    Lechevallier L, Breton J M L, Wang J F, Harris I R 2004 J. Phys. Condens. Matter 16 5359Google Scholar

    [37]

    Wagner T R 1997 J. Solid State Chem. 136 120

    [38]

    Fang Q, Cheng H, Huang K, Wang J, Li R, Jiao Y 2005 J. Magn. Magn Mater. 294 281Google Scholar

    [39]

    Banihashemi V, Ghazi M E, Izadifard M 2021 Physica B 605 412670Google Scholar

    [40]

    Buerger M J 1961 Z. Kristallogr. 115 319Google Scholar

    [41]

    Liu Y, Li R, Qing Y C 2024 Mater. Res. Bull. 172 112661Google Scholar

    [42]

    Banihashemi V, Ghazi M E, Izadifard M 2012 Physica B 605 412670

    [43]

    Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349Google Scholar

    [44]

    高娟, 刘其军, 蒋城露, 樊代和, 张淼, 刘福生, 唐斌 2022 高压物理学报 36 051101Google Scholar

    Gao J, Liu Q J, Jang C L Fan D H, Zhang M, Liu F S, Tang B 2022 Chin. J. High. Pressure Phys. 36 051101Google Scholar

    [45]

    Zhu L, Zeng Y R, Wen J, Wen J, Li L, Cheng T M 2018 Electrochim. Acta 292 190Google Scholar

    [46]

    Pugh S F 1954 Philos. Mag. 367 823

    [47]

    Morita A, Frood D G 1978 J. Phys. D: Appl. Phys. 11 2409Google Scholar

    [48]

    韩志全 2010 铁氧体及其磁性物理(北京: 航空工业出版社)第20页

    Han Z Q 2010 Ferrite and its Magnetic Physics (Beijing: Aviation Industry Press) p20

    [49]

    蒋有为 2020 博士学位论文(成都: 电子科技大学)

    Jang Y W 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [50]

    Steinbeck L, Richter M, Eschrig H 2001 J. Magn. Magn. Mater. 226 1011

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231436
    [2] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, doi: 10.7498/aps.72.20222037
    [3] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201287
    [4] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210227
    [5] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202043
    [6] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [7] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, doi: 10.7498/aps.67.20172459
    [8] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响. 物理学报, doi: 10.7498/aps.66.187301
    [9] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, doi: 10.7498/aps.65.096103
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [11] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, doi: 10.7498/aps.64.037501
    [12] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.62.187102
    [13] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.62.167502
    [14] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究. 物理学报, doi: 10.7498/aps.60.048101
    [15] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, doi: 10.7498/aps.60.097503
    [16] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.60.117105
    [17] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.59.5652
    [18] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, doi: 10.7498/aps.56.6008
    [19] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, doi: 10.7498/aps.55.873
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  337
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-22
  • 修回日期:  2025-01-15
  • 上网日期:  2025-01-23

/

返回文章
返回