搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯人工微结构的三频段太赫兹传感与慢光

成昱轩 许辉 于鸿飞 黄林琴 谷志超 陈玉峰 贺龙辉 陈智全 侯海良

引用本文:
Citation:

基于石墨烯人工微结构的三频段太赫兹传感与慢光

成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良

Tri-band terahertz sensing and slow light based on graphene artificial microstructure

Chegn Yuxuan, Xu Hui, Yu Hongfei, Huang Linqin, Gu Zhichao, Chen Yufeng, He Longhui, Chen Zhiquan, Hou Hailiang
PDF
导出引用
  • 本文提出了一种三频段太赫兹双重等离激元诱导透明的单层石墨烯器件,本器件结构简单且拥有优秀的慢光与传感性能。器件中的长石墨烯带能够直接被入射光激发,进而产生一个明模式;短石墨烯带则无法被入射光直接激发产生暗模式,但能够被明模式间接激发,明暗模式相互干涉从而形成表面等离子体诱导透明现象。本文通过耦合模理论推导此现象产生的机理,发现计算的结果与时域有限差分法基本一致。该结构不仅存在外部动态调节的优点,同时慢光与传感性能也十分优异。本文发现提高石墨烯器件的费米能级能够显著提高慢光效应,群折射率在石墨烯费米能级为1.1eV时达到最大值327.1。本结构还拥有优秀的传感性能,其灵敏度与品质因子最高分别达到1.442THz/RIU与39.6921。本研究有望为慢光与传感等领域的应用提供思路与理论基础。
    In this paper, a monolayer graphene-based tunable triple-band terahertz plasmons device with superior sensing and slow light performance. A very obvious dual PIT phenomenon was obtained by adjusting the device structure. Then, the transmission curves and electric field distributions of the long and short graphene bands at the three transmission windows are analyzed, to further investigate the mechanism of the light and dark modes of this structure(Fig. 3). Afterward, By comparing the Coupled-Mode Theory(CMT) theoretical data with the Finite difference time domain(FDTD) simulation data, it can be found that they show a high degree of agreement(Fig. 4). In addition, by analyzing the magnitude of the effective refractive indices of the real and imaginary parts at different Fermi energy levels. It can be found that it has a linear relationship with the Fermi energy level(Fig. 5). Research findings the phase of the electromagnetic wave fluctuates strongly when it is at the transmission window. Along with the increase of the Fermi energy level, the peak frequency of the group refractive index peak value also increases. When the Fermi energy level is at 1.1eV, the peak value of the group refractive index reaches 327.1(Fig. 6). In order to study the sensing effect of this device in more depth, a variety of different refractive indices of the medium are to be tested in this paper(Fig. 7). Based on the results it can be seen that the device has excellent sensing performance. Its sensitivity and Figure of Merit(FOM) reach up to 1.442 THz/RIU and 39.6921, respectively(Table 1). And by having superior performance compared to other sensors of the same type(Table 2). The structure compared with the traditional structure is capable of regulating the Fermi energy levels very conveniently by applying a voltage, to modulate the resonant frequency of the dual PIT. This study hopes to add a theoretical basis and provide a design reference for potential applications in fields such as slow light technology and sensing.
  • [1]

    Cavin R K, Lugli P, Zhirnov V V 2012Proc. IEEE 100 1720

    [2]

    Lundstrom M 2003Science 299 210

    [3]

    Lundstrom M S, Alam M A 2022Science 378 722

    [4]

    Powell J R 2008Proc. IEEE 96 1247

    [5]

    Shalf J 2020Philos. Trans. R. Soc., A 378 20190061

    [6]

    Yang X J, Xu H, Xu H X, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024Acta Phys. Sin. 73 183(杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全2024物理学报73 183)

    [7]

    Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P, Ni Z H 2022Chin. Phys. Lett. 39 058501

    [8]

    Bai Z Y, Zhang Q, Huang G X 2019Chin Opt Lett 17 012501

    [9]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2006Rep. Prog. Phys 70 1

    [10]

    Liu K J, Li J, Li Q X, Zhu J J 2022Chin. Phys. B 31 117303

    [11]

    Xu Q, Chen K, Sheng C J, Wang Q, Chen X X, Liu D W, Zhang K C 2019Sci. China Phys. Mech. Astron. 49 064201(徐倩, 陈科, 盛昌建, 王奇, 陈晓行, 刘頔威, 张开春2019中国科学: 物理学力学天文学49 064201)

    [12]

    Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301(陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华2019物理学报68 237301)

    [13]

    Artar A, Yanik A A, Altug H 2011Nano Lett. 11 1685

    [14]

    Kekatpure R D, Barnard E S, Cai W S, Brongersma M L 2010Phys. Rev. Lett. 104 243902

    [15]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014Sci. Rep. 43752

    [16]

    Otsuji T, Tombet S B, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V 2012J. Phys. D 45 303001

    [17]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012Nano Res. 5 667

    [18]

    Zhou Q G, Qiu Q X, Huang Z M 2023Opt. Laser Technol. 157 108558

    [19]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021Results Phys. 21 103795

    [20]

    Kumar S B, Guo J 2011Appl. Phys. Lett. 98 222101

    [21]

    Santos E J, Kaxiras E 2013Nano Lett. 13 898

    [22]

    Lukose V, Shankar R, Baskaran G 2007Phys. Rev. Lett. 98 116802

    [23]

    Yan J, Zhang Y B, Kim P, Pinczuk A 2007Phys. Rev. Lett. 98 166802

    [24]

    Glazov M, Ganichev S 2014Phys. Rep. 535 101

    [25]

    Kim T T, Kim H D, Zhao R k, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018ACS Photonics 5 1800

    [26]

    Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017Nat. Commun. 814411

    [27]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019Opt. Express 27 3598

    [28]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401

    [29]

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017Acta Phys. Sin. 66 204101(张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博2017物理学报66 204101)

    [30]

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024Sci. China Phys. Mech. Astron 54 234211(许辉, 李铭, 杨肖杰, 徐海烨, 陈智全2024中国科学:物理学力学天文学54 234211)

    [31]

    Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011Nature 47269

    [32]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884

    [33]

    Xia S X, Zhai X, Wang L L, Wen S C 2020Opt. Express 28 7980

    [34]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020Opt. Express 28 4048

    [35]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H J 2020Opt. Express 28 25767

    [36]

    Li Y C, Pan Y Z, Chen F, Ke S L, Yang W X 2024Opt. Quantum Electron. 56 1003

    [37]

    Yu Y S, Cui Z R, Wen K H, Lv H P, Liu W J, Zhang R L, Liu R M 2024Phys. Scr. 99 075529

    [38]

    Wu X X, Chen J N, Wang S L, Ren Y, Yang Y N, He Z H 2024Nanomaterials 14 997

    [39]

    Nene P, Strait J H, Chan W M, Manolatou C, Tiwari S, McEuen P L, Rana F 2014Appl. Phys. Lett. 105 143108

    [40]

    Li Q, Wang T, Su Y K, Yan M, Qiu M 2010Opt. Express 18 8367

    [41]

    Lin H, Xu D, Yang H L, Pantoja M, Garcia S 2014Chin. Phys. B 23 094203

    [42]

    Feng Y, Liu H, Chen C, Gao P, Luo H, Ren Z Y, Qiao Y J 2022Acta Photonica Sinica 51 0923001(冯越, 刘海, 陈聪, 高鹏, 罗灏, 任紫燕, 乔昱嘉2022光子学报51 0923001)

    [43]

    Liu J, Khan Z U, Wang C, Zhang H, Sarjoghian S 2020J. Phys. D 53 233002

    [44]

    Zhao H X, Cheng P H, Ding Z Q, Wang J X, Bao J L 2021Acta Optica Sinica 41 0728001(赵洪霞, 程培红, 丁志群, 王敬蕊, 鲍吉龙2021光学学报41 0728001)

    [45]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016Opt. Lett. 41 1241

    [46]

    Efetov D K, Kim P 2010Phys. Rev. Lett. 105 256805

    [47]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2023J. Phys. D 57 115101

    [48]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011Nature 472 69

    [49]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022Vacuum 206 111515

    [50]

    Fan Y C, Yang Z N, Xu Z Y, Zhang H, Sun K Y, Ye Z H, Zhang F L, Lou J 2024Laser Optoelectronics Progress 61 151(樊元成, 杨振宁, 徐子艺, 张宏, 孙康瑶, 叶哲浩, 张富利, 娄菁2024激光与光电子学进展61 151)

    [51]

    Li M, Xu H, Xu H Y, Yang X J, Yu H F, Cheng Y X, Chen Z Q 2024Opt. Commun. 554 130175

    [52]

    Zhang H, Yao P J, Gao E D, Liu C, Li M, Ruan B X, Xu H, Zhang B H, Li H J 2022J Opt Soc Am B 39 467

    [53]

    Xiao B G, Wang Y C, Cai W J, Xiao L H 2022Opt. Express 30 14985

    [54]

    Jiang W J, Chen T 2021Diam Relat Mater 118 108531

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, doi: 10.7498/aps.73.20241106
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, doi: 10.7498/aps.73.20240489
    [3] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, doi: 10.7498/aps.73.20240668
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, doi: 10.7498/aps.70.20210693
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [6] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, doi: 10.7498/aps.69.20200103
    [7] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, doi: 10.7498/aps.68.20191098
    [8] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, doi: 10.7498/aps.68.20190331
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [10] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, doi: 10.7498/aps.65.236801
    [11] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, doi: 10.7498/aps.65.087301
    [12] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, doi: 10.7498/aps.65.194205
    [13] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, doi: 10.7498/aps.63.127303
    [14] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, doi: 10.7498/aps.62.237303
    [15] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, doi: 10.7498/aps.62.177301
    [16] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, doi: 10.7498/aps.62.184208
    [17] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, doi: 10.7498/aps.60.064210
    [18] 王楠, 掌蕴东, 王金芳, 田赫, 王号, 张学楠, 张敬, 袁萍. 环中环结构谐振腔中的耦合谐振透明特性研究. 物理学报, doi: 10.7498/aps.58.7672
    [19] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究. 物理学报, doi: 10.7498/aps.58.3943
    [20] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究. 物理学报, doi: 10.7498/aps.58.2049
计量
  • 文章访问数:  69
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回