搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子等离激元光子学在若干方向的最新进展

徐飞翔 李晓光 张振宇

引用本文:
Citation:

量子等离激元光子学在若干方向的最新进展

徐飞翔, 李晓光, 张振宇

Some recent advances on quantum plasmonics

Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu
PDF
HTML
导出引用
  • 等离激元光子学是围绕表面等离激元的原理和应用的学科, 是纳米光学的重要组成部分. 表面等离激元的本质是局域在材料界面纳米尺度内的多电子元激发. 这一元激发可以与电磁场强烈耦合, 使得我们可以通过纳米尺度结构接收, 调控和辐射微米尺度光信息, 并由此衍生出等离激元光子学的诸多应用. 近年来, 随着纳米加工尺度逼近量子极限, 等离激元的量子特性受到了广泛关注. 量子尺度的等离激元承接电子的波动性和光的粒子性, 以其独特的內禀属性, 在量子信息、高效光电器件、高灵敏探测等方面表现出十分诱人的前景. 本综述重点介绍量子等离激元近年来的发展现状, 回顾相关理论的发展以及与等离激元量子特性相关的一些突破性成果. 最后对量子等离激元未来的发展进行了展望.
    Plasmonics, focusing on the fundamental researches and novel applications of plasmons, has rapidly developed as an important branch of nano-optics in recent years. Essentially, surface plasmons are highly localized collective electron excitation at a metal-dielectric interface. This elementary excitation can be strongly coupled with electromagnetic fields, which enable one to collect, manipulate, and emit micron-scale optical signals through using nano-scale structures. Recently, the quantum properties of plasmons have received tremendous attention as nanofabrication techniques approach to the quantum limit. On this scale, with the unique intrinsic properties of plasmons, i.e. the particle-like nature of photons and wave-like nature of electrons, quantum plasmonics exhibits very attractive prospects in quantum information, high-efficiency optoelectronic devices, and highly sensitive detection, etc. Here in this paper, we review the development of quantum plasmonics in recent years, by introducing the research progress of relevant theories and the experimental breakthroughes. Some perspectives of the future development of quantum plasmonics are also outlined.
      通信作者: 李晓光, xgli@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874268)资助的课题.
      Corresponding author: Li Xiao-Guang, xgli@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874268).
    [1]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [2]

    Nie S, Emory S R 1997 Science 275 5303Google Scholar

    [3]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [4]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [5]

    Atwater H A, Polman A 2010 Nature Mater. 9 205Google Scholar

    [6]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    Engheta N 2007 Science 317 1698Google Scholar

    [9]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [10]

    Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110Google Scholar

    [11]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [12]

    Tong L, Wei H, Zhang S, Xu H 2014 Sensors (Switzerland) 14 7959Google Scholar

    [13]

    Pines D, Bohm D 1952 Phys. Rev. 85 338Google Scholar

    [14]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [15]

    Powell C J, Swan J B 1959 Phys. Rev. 115 869Google Scholar

    [16]

    Elson J M, Ritchie R H 1971 Phys. Rev. B 4 4129Google Scholar

    [17]

    Hopfield J J 1958 Phys. Rev. 112 1555Google Scholar

    [18]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887Google Scholar

    [19]

    Zhao K, Troparevsky M C, Xiao D, Eguiluz A G, Zhang Z 2009 Phys. Rev. Lett. 102 186804Google Scholar

    [20]

    Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803Google Scholar

    [21]

    Brongersma M L, Halas N J, Nordlander P 2015 Nature Nanotech. 10 25Google Scholar

    [22]

    Clavero C 2014 Nat. Photon. 8 95

    [23]

    Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A L, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nature Phys. 5 470Google Scholar

    [24]

    Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501Google Scholar

    [25]

    Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304Google Scholar

    [26]

    Moreno E, García-Vidal F J, Erni D, Cirac J I, Martín-Moreno L 2004 Phys. Rev. Lett. 92 236801Google Scholar

    [27]

    Huck A, Smolka S, Lodahl P, Sørensen A S, Boltasseva A, Janousek J, Andersen U L 2009 Phys. Rev. Lett. 102 246802Google Scholar

    [28]

    Wei H, Pan D, Xu H 2015 Nanoscale 7 19053Google Scholar

    [29]

    Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 27402Google Scholar

    [30]

    Li X, Teng A, Özer M M, Shen J, Weitering H H, Zhang Z 2014 New J. Phys. 16 065014Google Scholar

    [31]

    Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 023011Google Scholar

    [32]

    Yuan Z, Gao S 2006 Phys. Rev. B 73 155411Google Scholar

    [33]

    Eguiluz A G 1985 Phys. Rev. B 31 3303Google Scholar

    [34]

    Ekardt W 1985 Phys. Rev. B 31 6360Google Scholar

    [35]

    Scholl J A, Koh A L, Dionne J A 2012 Nature 483 421Google Scholar

    [36]

    Savage K J, Hawkeye M M, Esteban R, Borisov A G, Aizpurua J, Baumberg J J 2012 Nature 491 574Google Scholar

    [37]

    Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825Google Scholar

    [38]

    Bennett A J 1970 Phys. Rev. B 1 203Google Scholar

    [39]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [40]

    Faucheaux J A, Fu J, Jain P K 2014 J. Phys. Chem. C 118 2710Google Scholar

    [41]

    Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [42]

    McMahon J M, Gray S K, Schatz G C 2009 Phys. Rev. Lett. 103 097403Google Scholar

    [43]

    Luo Y, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901Google Scholar

    [44]

    Zhang W, Govorov A O, Bryant G W 2006 Phys. Rev. Lett. 97 146804Google Scholar

    [45]

    Artuso R D, Bryant G W 2008 Nano Lett. 8 2106Google Scholar

    [46]

    González-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801Google Scholar

    [47]

    Manjavacas A, García de Abajo F J, Nordlander P 2011 Nano Lett. 11 2318Google Scholar

    [48]

    Ding S J, Li X, Nan F, Zhong Y T, Zhou L, Xiao X, Wang Q Q, Zhang Z 2017 Phys. Rev. Lett. 119 177401Google Scholar

    [49]

    Tian G, Liu J C, Luo Y 2011 Phys. Rev. Lett. 106 177401Google Scholar

    [50]

    Kroner M, Govorov A O, Remi S, Biedermann B, Seidl S, Badolato A, Petroff P M, Zhang W, Barbour R, Gerardot B D, Warburton R J, Karrai K 2008 Nature 451 311Google Scholar

    [51]

    Nan F, Zhang Y F, Li X, Zhang X T, Li H, Zhang X, Jiang R, Wang J, Zhang W, Zhou L, Wang J H, Wang Q Q, Zhang Z 2015 Nano Lett. 15 2705Google Scholar

    [52]

    Lee J S, Huynh T, Lee S Y, Lee K G, Lee J, Tame M, Rockstuhl C, Lee C 2017 Phys. Rev. A 96 033833Google Scholar

    [53]

    Kim H T, Yu M 2019 Sci. Rep. 9 1922Google Scholar

    [54]

    Farcau C 2019 Sci. Rep. 9 3683Google Scholar

    [55]

    Alaeian H, Dionne J A 2014 Phys. Rev. A 89 033829Google Scholar

    [56]

    Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M, Tsakmakidis K L 2012 Nature Mater. 11 573Google Scholar

    [57]

    Sun M, Fang Y, Zhang Z, Xu H 2013 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 87 020401Google Scholar

    [58]

    Steidtner J, Pettinger B 2008 Phys. Rev. Lett. 100 236101Google Scholar

    [59]

    Ichimura T, Fujii S, Verma P, Yano T, Inouye Y, Kawata S 2009 Phys. Rev. Lett. 102 186101Google Scholar

    [60]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [61]

    Zhong J H, Jin X, Meng L, Wang X, Su H S, Yang Z L, Williams C T, Ren B 2017 Nature Nanotech. 12 132Google Scholar

    [62]

    Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nature Photon. 4 50Google Scholar

    [63]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [64]

    Wang H F, Chen G, Li X G, Dong Z C 2018 Chin. J. Chem. Phys. 31 263Google Scholar

    [65]

    Chen G, Li X G, Dong Z C 2015 Chin. J. Chem. Phys. 28 552Google Scholar

    [66]

    Chen G, Li X G, Zhang Z Y, Dong Z C 2015 Nanoscale 7 2442Google Scholar

    [67]

    Chen G, Luo Y, Gao H Y, Jiang J, Yu Y J, Zhang L, Zhang Y, Li X G, Zhang Z Y, Dong Z C 2019 Phys. Rev. Lett. 122 177401Google Scholar

    [68]

    Li G C, Zhang Q, Maier S A, Lei D 2018 Nanophotonics 7 1865Google Scholar

    [69]

    Li X, Zhou L, Hao Z, Wang Q Q 2018 Adv. Opt. Mater. 6 1800275Google Scholar

    [70]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [71]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [72]

    Gramotnev D K, Bozhevolnyi S I 2010 Nature Photon. 4 83Google Scholar

    [73]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [74]

    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501Google Scholar

    [75]

    Economou E N 1969 Phys. Rev. 182 539Google Scholar

    [76]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nature Mater. 2 229Google Scholar

    [77]

    Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T 1997 Opt. Lett. 22 475Google Scholar

    [78]

    Onuki T, Watanabe Y, Nishio K, Tsuchiya T, Tani T, Tokizaki T 2003 J. Microsc. 210 284Google Scholar

    [79]

    Zia R, Schuller J A, Brongersma M L 2006 Phys. Rev. B 74 165415Google Scholar

    [80]

    Boardman A D, Aers G C, Teshima R 1981 Phys. Rev. B 24 5703Google Scholar

    [81]

    Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402Google Scholar

    [82]

    Heeres R W, Kouwenhoven L P, Zwiller V 2013 Nature Nanotech. 8 719Google Scholar

    [83]

    Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490Google Scholar

    [84]

    Vest B, Dheur M C, Devaux É, Baron A, Rousseau E, Hugonin J P, Greffet J J, Messin G, Marquier F 2017 Science 356 1373Google Scholar

    [85]

    Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S 2012 Science 337 450Google Scholar

    [86]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nature Mater. 10 110Google Scholar

    [87]

    Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y, Sun M, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K 2009 Opt. Express 17 11107Google Scholar

    [88]

    Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204Google Scholar

    [89]

    Wang S, Chen H Z, Ma R M 2018 Nano Lett. 18 7942Google Scholar

    [90]

    Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I, Zharov V P 2017 Nat. Commun. 8 15528Google Scholar

    [91]

    Ma R M, Oulton R F 2019 Nature Nanotech. 14 12Google Scholar

    [92]

    Ma R M, Ota S, Li Y, Yang S, Zhang X 2014 Nature Nanotech. 9 600Google Scholar

    [93]

    Wang X Y, Wang Y L, Wang S, Li B, Zhang X W, Dai L, Ma R M 2017 Nanophotonics 6 472Google Scholar

    [94]

    Hoang T B, Akselrod G M, Mikkelsen M H 2016 Nano Lett. 16 270Google Scholar

    [95]

    Liu R, Zhou Z K, Yu Y C, Zhang T, Wang H, Liu G, Wei Y, Chen H, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [96]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802Google Scholar

    [97]

    Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [98]

    Lee J, Jo S D, Kim S E, Won Y Y, Lee B R, Lee H, Kim H 2017 Sci. Rep. 7 17327Google Scholar

    [99]

    Tian Y, Tatsuma T 2004 Chem. Commun. 10 1810Google Scholar

    [100]

    Tian Y, Tatsuma T 2005 J. Am. Chem. Soc. 127 7632Google Scholar

    [101]

    Hisatomi T, Kubota J, Domen K 2014 Chem. Soc. Rev. 43 7520Google Scholar

    [102]

    Qin L, Wang G, Tan Y 2018 Sci. Rep. 8 16198Google Scholar

    [103]

    Nan F, Ding S J, Ma L, Cheng Z Q, Zhong Y T, Zhang Y F, Qiu Y H, Li X, Zhou L, Wang Q Q 2016 Nanoscale 8 15071Google Scholar

    [104]

    Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622Google Scholar

    [105]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 702 6030

    [106]

    Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301Google Scholar

    [107]

    Wu K, Chen J, McBride J R, Lian T 2015 Science 349 632Google Scholar

    [108]

    Tan S, Argondizzo A, Ren J, Liu L, Zhao J, Petek H 2017 Nature Photon. 11 806Google Scholar

    [109]

    Rodin A S, Fogler M M, McLeod A S, Thiemens M, Lau C N, Keilmann F, Dominguez G, Andreev G O, Zhao Z, Wagner M, Zhang L M, Neto A H C, Fei Z, Basov D N, Bao W 2012 Nature 487 82Google Scholar

    [110]

    Badioli M, Huth F, Hillenbrand R, Osmond J, Chen J, Thongrattanasiri S, Alonso-González P, Camara N, Godignon P, Pesquera A, de Abajo F J G, Zurutuza Elorza A, Centeno A, Koppens F H L, Spasenović M 2012 Nature 487 77Google Scholar

    [111]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [112]

    Cao Y, Li X, Wang D, Fan X, Lu X, Zhang Z, Zeng C, Zhang Z 2014 Phys. Rev. B 90 245415Google Scholar

    [113]

    Cheng G, Wang D, Dai S, Fan X, Wu F, Li X, Zeng C 2018 Nanoscale 10 16314Google Scholar

    [114]

    Wang D, Fan X, Li X, Dai S, Wei L, Qin W, Wu F, Zhang H, Qi Z, Zeng C, Zhang Z, Hou J 2018 Nano Lett. 18 1373Google Scholar

    [115]

    Zhang L, Fu X L, Yang J Z 2014 Commun. Theor. Phys. 61 751Google Scholar

    [116]

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light: Sci. Appl. 7 56Google Scholar

    [117]

    Long J P, Simpkins B S 2015 ACS Photon. 2 130Google Scholar

    [118]

    Wu N, Feist J, Garcia-Vidal F J 2016 Phys. Rev. B 94 195409Google Scholar

    [119]

    del Pino J, Feist J, Garcia-Vidal F J 2015 New J. Phys. 17 053040Google Scholar

    [120]

    Rivera N, Kaminer I, Zhen B, Joannopoulos J D, Soljačić M 2016 Science 353 263Google Scholar

    [121]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nature Photon. 7 128Google Scholar

    [122]

    Joel Y Z, Saikin S K, Zhu T, Onbasli M C, Ross C A, Bulovic V, Baldo M A 2016 Nat. Commun. 7 11783Google Scholar

    [123]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

  • 图 1  纳米间隙 (a) (Agn)2二聚物的静态极化率${\alpha _{zz}}$与间隙S的关系; (b) 在(Ag18)2,t-t二聚物中转移电荷QS的函数[19]; (c) 利用TDLDA计算(点)与经典电磁场计算(线)二聚体等离激元能; (d) 三种体系中的等离激元相互作用; 随着腔宽度d的减小, 从模拟的近场分布中提取的每种模式的横向限制宽度w[18]

    Fig. 1.  Field in nano gap: (a) Static polarizability ${\alpha _{zz}}$ of ${\left( {{\rm{A}}{{\rm{g}}_n}} \right)_2}$ dimer as a function of gap size S; (b) transferred charge Q as a function of S in ${\left( {{\rm{A}}{{\rm{g}}_{18}}} \right)}$2,t-t ; (c) comparison between TDLDA results (dots) and classical results (lines) for the plasmon energy of the dimer; (d) plasmonic interactions within the three regimes; the lateral confinement width w of each mode, extracted from the simulated near-field distribution, as the cavity width d is reduced[18].

    图 2  TERS光谱分析 (a) TERS设置的示意图; (b) Ag(111)上单层H2TBPP分子的STM图谱; (c) 不同位置或条件下TERS光谱[60]

    Fig. 2.  TERS spectra: (a) Schematic setup of the TERS; (b) STM topograph of H2TBPP molecules monolayer on Ag(111); (c) TERS spectra at different positions or conditions[60]

    图 3  混合系统在不同耦合强度${V_{\rm{c}}}$${V_{\rm{p}}}$下光谱特征的理论计算 (a), (c)固定${V_{\rm{p}}}$时不同${V_{\rm{c}}}$的吸收光谱; (b), (d) 固定${V_{\rm{c}}}$时不同${V_{\rm{p}}}$的吸收光谱[48]

    Fig. 3.  Theoretically calculated spectral features of the hybrid systems at different coupling strengths ${V_{\rm{c}}}$ and ${V_{\rm{p}}}$: The absorption spectra at (a), (c) different ${V_{\rm{c}}}$ with a fixed ${V_{\rm{p}}}$ and (b), (d) different ${V_{\rm{p}}}$ with a fixed ${V_{\rm{c}}}$[48]

    图 4  等离激元激发增强量子相干的机制: 石墨烯中电子-电子散射的示意图 (a) 无等离激元激发; (b) 存在等离激元激发[20]

    Fig. 4.  The mechanism of plasmon-enhanced quantum coherence: Schematic of electron-electron scattering with (a) and without (b) plasmon excitation[20]

    图 5  等离激元回路 (a), (b) 由级联OR和NOT门构建的NOR逻辑门示意图及 设计的Ag NW结构的光学图像[9]; (c), (d) 由三个PDBS (polarization dependent beam-splitters)组成的简化CNOT门(controlled-NOT gate)示意图

    Fig. 5.  Plasmonic circuits: (a) Schematic illustration of logic gate NOR built by cascaded OR and NOT gates; (b) optical image of the designed Ag NW structure[9]; (c), (d) schematic of the simplified CNOT gate composed of three PDBSs

    图 6  等离激元激光器设计进展 (a) 混合纳米颗粒结构图; (b) 金核的透射电镜图像[10]; (c) 等离激元激光器的结构示意图; (d) 发生激射时的电场分布[11]; (e), (f) 等离激元激光器的结构示意图[85]

    Fig. 6.  Spaser design: (a) Diagram of the hybrid nanoparticle architecture; (b) transmission electron microscope image of Au core[10]; (c) schematic of the plasmonic laser; (d) the stimulated electric field distribution at laser frequency[11]; (e), (f) schematic of the plasmonic laser[85]

    图 7  超快室温单光子发射源 (a) 在银纳米管和金膜间隙中的单个胶体量子点图示; (b) 嵌入纳米腔中的单个量子点的横截面示意图; (c) 随机定向偶极子的自发辐射率相对于自由空间率的模拟增强[94]

    Fig. 7.  Ultrafast room-temperature single photon emission: (a) Illustration of a single colloidal QD in the gap between a silver nanocube and a gold film; (b) cross-sectional schematic of a single QD embedded in the nanocavity; (c) simulated enhancement in the spontaneous emission rate relative to the free space rate[94]

    图 8  金属-半导体电荷分离路径 (a) PHET机制, 其中金属中的光激发等离激元通过朗道阻尼衰变为热电子-空穴对, 然后将热电子注入半导体导带; (b) 金属中电子通过DICTT路径直接进入半导体导带的光激发; (c) PICTT机制, 等离激元通过直接在半导体导带中产生电子和在金属中形成空穴而衰变[107]

    Fig. 8.  Metal-to-semiconductor charge-separation pathways: (a) The PHET mechanism, in which a photoexcited plasmon decays into a hot electron-hole pair through Landau damping, followed by injection of the hot electron into the CB of the semiconductor; (b) optical excitation of an electron in the metal directly into the CB of the semiconductor through the DICTT pathway; (c) the PICTT pathway, where the plasmon decays by directly creating an electron in the CB of the semiconductor and a hole in the metal[107]

    图 9  二维材料与等离激元光子学 (a) 扫描近场测量示意图; (b) 一种潜在的等离激元反射的可调谐性[112]; (c) 利用硅针尖获得的典型近场振幅图像, 红线显示了相应的等离激元振荡行为; (d)观测结果的理论拟合, 浅蓝色点是实验结果, 黑色实线代表理论拟合, 包括不同激发对振幅的贡献[113]; (e) 使用二维原子晶体探针探测定向等离激元增强; (f) 纳米腔体系的拉曼散射光谱[116]

    Fig. 9.  Plasmonics in two-dimensional materials: (a) Schematic of the scanning near-field measurements; (b)tunability of plasmon reflection at a potential step[112]; (c) typical near-field amplitude image obtained utilizing a silicon tip, the red line profile shows the corresponding oscillating behavior; (d) theoretical fitting of the observed profile, the light blue points are the experimental results, and the black solid line represents the theoretical fitting, which includes the contributions from the different excitations[113]; (e) probing directional plasmonic enhancements using a two-dimensional atomic crystal probe; (f) Raman scattering spectra of the nanocavity system[116]

  • [1]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [2]

    Nie S, Emory S R 1997 Science 275 5303Google Scholar

    [3]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [4]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [5]

    Atwater H A, Polman A 2010 Nature Mater. 9 205Google Scholar

    [6]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    Engheta N 2007 Science 317 1698Google Scholar

    [9]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [10]

    Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110Google Scholar

    [11]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [12]

    Tong L, Wei H, Zhang S, Xu H 2014 Sensors (Switzerland) 14 7959Google Scholar

    [13]

    Pines D, Bohm D 1952 Phys. Rev. 85 338Google Scholar

    [14]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [15]

    Powell C J, Swan J B 1959 Phys. Rev. 115 869Google Scholar

    [16]

    Elson J M, Ritchie R H 1971 Phys. Rev. B 4 4129Google Scholar

    [17]

    Hopfield J J 1958 Phys. Rev. 112 1555Google Scholar

    [18]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887Google Scholar

    [19]

    Zhao K, Troparevsky M C, Xiao D, Eguiluz A G, Zhang Z 2009 Phys. Rev. Lett. 102 186804Google Scholar

    [20]

    Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803Google Scholar

    [21]

    Brongersma M L, Halas N J, Nordlander P 2015 Nature Nanotech. 10 25Google Scholar

    [22]

    Clavero C 2014 Nat. Photon. 8 95

    [23]

    Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A L, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nature Phys. 5 470Google Scholar

    [24]

    Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501Google Scholar

    [25]

    Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304Google Scholar

    [26]

    Moreno E, García-Vidal F J, Erni D, Cirac J I, Martín-Moreno L 2004 Phys. Rev. Lett. 92 236801Google Scholar

    [27]

    Huck A, Smolka S, Lodahl P, Sørensen A S, Boltasseva A, Janousek J, Andersen U L 2009 Phys. Rev. Lett. 102 246802Google Scholar

    [28]

    Wei H, Pan D, Xu H 2015 Nanoscale 7 19053Google Scholar

    [29]

    Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 27402Google Scholar

    [30]

    Li X, Teng A, Özer M M, Shen J, Weitering H H, Zhang Z 2014 New J. Phys. 16 065014Google Scholar

    [31]

    Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 023011Google Scholar

    [32]

    Yuan Z, Gao S 2006 Phys. Rev. B 73 155411Google Scholar

    [33]

    Eguiluz A G 1985 Phys. Rev. B 31 3303Google Scholar

    [34]

    Ekardt W 1985 Phys. Rev. B 31 6360Google Scholar

    [35]

    Scholl J A, Koh A L, Dionne J A 2012 Nature 483 421Google Scholar

    [36]

    Savage K J, Hawkeye M M, Esteban R, Borisov A G, Aizpurua J, Baumberg J J 2012 Nature 491 574Google Scholar

    [37]

    Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825Google Scholar

    [38]

    Bennett A J 1970 Phys. Rev. B 1 203Google Scholar

    [39]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [40]

    Faucheaux J A, Fu J, Jain P K 2014 J. Phys. Chem. C 118 2710Google Scholar

    [41]

    Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [42]

    McMahon J M, Gray S K, Schatz G C 2009 Phys. Rev. Lett. 103 097403Google Scholar

    [43]

    Luo Y, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901Google Scholar

    [44]

    Zhang W, Govorov A O, Bryant G W 2006 Phys. Rev. Lett. 97 146804Google Scholar

    [45]

    Artuso R D, Bryant G W 2008 Nano Lett. 8 2106Google Scholar

    [46]

    González-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801Google Scholar

    [47]

    Manjavacas A, García de Abajo F J, Nordlander P 2011 Nano Lett. 11 2318Google Scholar

    [48]

    Ding S J, Li X, Nan F, Zhong Y T, Zhou L, Xiao X, Wang Q Q, Zhang Z 2017 Phys. Rev. Lett. 119 177401Google Scholar

    [49]

    Tian G, Liu J C, Luo Y 2011 Phys. Rev. Lett. 106 177401Google Scholar

    [50]

    Kroner M, Govorov A O, Remi S, Biedermann B, Seidl S, Badolato A, Petroff P M, Zhang W, Barbour R, Gerardot B D, Warburton R J, Karrai K 2008 Nature 451 311Google Scholar

    [51]

    Nan F, Zhang Y F, Li X, Zhang X T, Li H, Zhang X, Jiang R, Wang J, Zhang W, Zhou L, Wang J H, Wang Q Q, Zhang Z 2015 Nano Lett. 15 2705Google Scholar

    [52]

    Lee J S, Huynh T, Lee S Y, Lee K G, Lee J, Tame M, Rockstuhl C, Lee C 2017 Phys. Rev. A 96 033833Google Scholar

    [53]

    Kim H T, Yu M 2019 Sci. Rep. 9 1922Google Scholar

    [54]

    Farcau C 2019 Sci. Rep. 9 3683Google Scholar

    [55]

    Alaeian H, Dionne J A 2014 Phys. Rev. A 89 033829Google Scholar

    [56]

    Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M, Tsakmakidis K L 2012 Nature Mater. 11 573Google Scholar

    [57]

    Sun M, Fang Y, Zhang Z, Xu H 2013 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 87 020401Google Scholar

    [58]

    Steidtner J, Pettinger B 2008 Phys. Rev. Lett. 100 236101Google Scholar

    [59]

    Ichimura T, Fujii S, Verma P, Yano T, Inouye Y, Kawata S 2009 Phys. Rev. Lett. 102 186101Google Scholar

    [60]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [61]

    Zhong J H, Jin X, Meng L, Wang X, Su H S, Yang Z L, Williams C T, Ren B 2017 Nature Nanotech. 12 132Google Scholar

    [62]

    Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nature Photon. 4 50Google Scholar

    [63]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [64]

    Wang H F, Chen G, Li X G, Dong Z C 2018 Chin. J. Chem. Phys. 31 263Google Scholar

    [65]

    Chen G, Li X G, Dong Z C 2015 Chin. J. Chem. Phys. 28 552Google Scholar

    [66]

    Chen G, Li X G, Zhang Z Y, Dong Z C 2015 Nanoscale 7 2442Google Scholar

    [67]

    Chen G, Luo Y, Gao H Y, Jiang J, Yu Y J, Zhang L, Zhang Y, Li X G, Zhang Z Y, Dong Z C 2019 Phys. Rev. Lett. 122 177401Google Scholar

    [68]

    Li G C, Zhang Q, Maier S A, Lei D 2018 Nanophotonics 7 1865Google Scholar

    [69]

    Li X, Zhou L, Hao Z, Wang Q Q 2018 Adv. Opt. Mater. 6 1800275Google Scholar

    [70]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [71]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [72]

    Gramotnev D K, Bozhevolnyi S I 2010 Nature Photon. 4 83Google Scholar

    [73]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [74]

    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501Google Scholar

    [75]

    Economou E N 1969 Phys. Rev. 182 539Google Scholar

    [76]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nature Mater. 2 229Google Scholar

    [77]

    Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T 1997 Opt. Lett. 22 475Google Scholar

    [78]

    Onuki T, Watanabe Y, Nishio K, Tsuchiya T, Tani T, Tokizaki T 2003 J. Microsc. 210 284Google Scholar

    [79]

    Zia R, Schuller J A, Brongersma M L 2006 Phys. Rev. B 74 165415Google Scholar

    [80]

    Boardman A D, Aers G C, Teshima R 1981 Phys. Rev. B 24 5703Google Scholar

    [81]

    Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402Google Scholar

    [82]

    Heeres R W, Kouwenhoven L P, Zwiller V 2013 Nature Nanotech. 8 719Google Scholar

    [83]

    Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490Google Scholar

    [84]

    Vest B, Dheur M C, Devaux É, Baron A, Rousseau E, Hugonin J P, Greffet J J, Messin G, Marquier F 2017 Science 356 1373Google Scholar

    [85]

    Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S 2012 Science 337 450Google Scholar

    [86]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nature Mater. 10 110Google Scholar

    [87]

    Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y, Sun M, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K 2009 Opt. Express 17 11107Google Scholar

    [88]

    Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204Google Scholar

    [89]

    Wang S, Chen H Z, Ma R M 2018 Nano Lett. 18 7942Google Scholar

    [90]

    Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I, Zharov V P 2017 Nat. Commun. 8 15528Google Scholar

    [91]

    Ma R M, Oulton R F 2019 Nature Nanotech. 14 12Google Scholar

    [92]

    Ma R M, Ota S, Li Y, Yang S, Zhang X 2014 Nature Nanotech. 9 600Google Scholar

    [93]

    Wang X Y, Wang Y L, Wang S, Li B, Zhang X W, Dai L, Ma R M 2017 Nanophotonics 6 472Google Scholar

    [94]

    Hoang T B, Akselrod G M, Mikkelsen M H 2016 Nano Lett. 16 270Google Scholar

    [95]

    Liu R, Zhou Z K, Yu Y C, Zhang T, Wang H, Liu G, Wei Y, Chen H, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [96]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802Google Scholar

    [97]

    Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [98]

    Lee J, Jo S D, Kim S E, Won Y Y, Lee B R, Lee H, Kim H 2017 Sci. Rep. 7 17327Google Scholar

    [99]

    Tian Y, Tatsuma T 2004 Chem. Commun. 10 1810Google Scholar

    [100]

    Tian Y, Tatsuma T 2005 J. Am. Chem. Soc. 127 7632Google Scholar

    [101]

    Hisatomi T, Kubota J, Domen K 2014 Chem. Soc. Rev. 43 7520Google Scholar

    [102]

    Qin L, Wang G, Tan Y 2018 Sci. Rep. 8 16198Google Scholar

    [103]

    Nan F, Ding S J, Ma L, Cheng Z Q, Zhong Y T, Zhang Y F, Qiu Y H, Li X, Zhou L, Wang Q Q 2016 Nanoscale 8 15071Google Scholar

    [104]

    Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622Google Scholar

    [105]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 702 6030

    [106]

    Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301Google Scholar

    [107]

    Wu K, Chen J, McBride J R, Lian T 2015 Science 349 632Google Scholar

    [108]

    Tan S, Argondizzo A, Ren J, Liu L, Zhao J, Petek H 2017 Nature Photon. 11 806Google Scholar

    [109]

    Rodin A S, Fogler M M, McLeod A S, Thiemens M, Lau C N, Keilmann F, Dominguez G, Andreev G O, Zhao Z, Wagner M, Zhang L M, Neto A H C, Fei Z, Basov D N, Bao W 2012 Nature 487 82Google Scholar

    [110]

    Badioli M, Huth F, Hillenbrand R, Osmond J, Chen J, Thongrattanasiri S, Alonso-González P, Camara N, Godignon P, Pesquera A, de Abajo F J G, Zurutuza Elorza A, Centeno A, Koppens F H L, Spasenović M 2012 Nature 487 77Google Scholar

    [111]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [112]

    Cao Y, Li X, Wang D, Fan X, Lu X, Zhang Z, Zeng C, Zhang Z 2014 Phys. Rev. B 90 245415Google Scholar

    [113]

    Cheng G, Wang D, Dai S, Fan X, Wu F, Li X, Zeng C 2018 Nanoscale 10 16314Google Scholar

    [114]

    Wang D, Fan X, Li X, Dai S, Wei L, Qin W, Wu F, Zhang H, Qi Z, Zeng C, Zhang Z, Hou J 2018 Nano Lett. 18 1373Google Scholar

    [115]

    Zhang L, Fu X L, Yang J Z 2014 Commun. Theor. Phys. 61 751Google Scholar

    [116]

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light: Sci. Appl. 7 56Google Scholar

    [117]

    Long J P, Simpkins B S 2015 ACS Photon. 2 130Google Scholar

    [118]

    Wu N, Feist J, Garcia-Vidal F J 2016 Phys. Rev. B 94 195409Google Scholar

    [119]

    del Pino J, Feist J, Garcia-Vidal F J 2015 New J. Phys. 17 053040Google Scholar

    [120]

    Rivera N, Kaminer I, Zhen B, Joannopoulos J D, Soljačić M 2016 Science 353 263Google Scholar

    [121]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nature Photon. 7 128Google Scholar

    [122]

    Joel Y Z, Saikin S K, Zhu T, Onbasli M C, Ross C A, Bulovic V, Baldo M A 2016 Nat. Commun. 7 11783Google Scholar

    [123]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [3] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [4] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [5] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [8] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展. 物理学报, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [9] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [10] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [12] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [13] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [14] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [16] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [17] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [18] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [19] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [20] 赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎. 高电荷态离子126Xeq+与Ti固体表面作用的激发光谱. 物理学报, 2003, 52(11): 2768-2773. doi: 10.7498/aps.52.2768
计量
  • 文章访问数:  11268
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-08
  • 修回日期:  2019-04-08
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回