搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元

侯磊 关舒阳 尹俊 张语军 肖宜明 徐文 丁岚

引用本文:
Citation:

谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元

侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚

High-order cavity coupled plasmon polaritons in a cavity-monolayer MoS2 system

Hou Lei, Guan Shuyang, Yin Jun, Zhang Yujun, Xiao Yiming, Xu Wen, Ding Lan
PDF
导出引用
  • 以单层MoS2为代表的二维过渡金属硫族化物,因具有可调谐的非0带隙,故应用在光电子学器件中要比石墨烯更具优势。本文使用经典电磁理论和有限元分析方法,研究了谐振腔中腔模与单层MoS2等离激元之间耦合形成的腔耦合等离极化激元,并重点计算和验证了其中高阶模式的特性。考虑到化学气相沉积法生长的单层MoS2中衬底、多晶和缺陷会引起弱电子局域化,从而导致基于自由电子气假设的Drude模型准确性变差,故本文在理论和仿真中使用了Drude-Smith模型描述单层MoS2光电导率,该模型通过拟合实验数据得到。基于此,文章不仅导出了高阶腔耦合等离极化激元的色散方程并求解出了其色散曲线,还通过仿真计算验证了这些高阶模式的存在性,分析了其基本性质以及弱电子局域化的影响。上述结果能加深对二维材料等离激元的耦合激发以及特性调控的理解,所用理论模型也能推广到其他低维、拓扑量子材料相关的等离系统当中。
    Compared to graphene, two-dimensional (2D) transition metal sulfides, represented by mono-/few-layer MoS2, have tunable non-zero bandgap, which make their application in optoelectronic devices more advantageous. By using classical electromagnetic theory and finite element method (FEM), we investigate the cavity coupled plasmon polaritons (CCPPs) formed through the coupling between cavity modes in a resonator and plasmons in monolayer MoS2, particularly calculate and verify the properties of the high-order CCPPs. In previous work, it was demonstrated that the substrates, defects, and polycrystalline grains of the CVD grown monolayer MoS2 usually induce weak electron localization, which leads to the deviation from the Drude model based on the approximation of free electron gas. Therefore, here we use the Drude-Smith model with characteristic parameters obtained experimentally to describe the optical conductivity of monolayer MoS2 in our theoretical calculation and simulation. Then, we not only derive and solve the dispersion equations of the high-order CCPPs, but also verify the existence and analyze the properties of these high-order modes. Specifically, there are three types of CCPPs in the asymmetric cavity-monolayer MoS2 system, i. e., the FP-like-modes (FPLMs), the surface-plasmon-like modes (SPLMs), and the quasi-localized modes (QLMs). Among them, the FPLMs and QLMs can support high-order modes whereas the SPLM only support the fundamental mode. Based on our model, we calculate the wave localization properties for the 7th-order and 8th-order FPLMs, the 3rd-order and 6th-order QLMs, and the SPLM. These theoretical results are in good agreement with the simulation results. Moreover, the effects of weak electron localization are also shown by comparing the field distributions of the CCPPs based on the Drude model and Drude-Smith model. It is found that weak electron localization can reduce the coupling between the cavity modes and the plasmons in monolayer MoS2. These results can deepen our understanding of the excitation of plasmons in 2D materials as well as the modulation of their properties. Furthermore, the theoretical model can also be extended to other plasmonic systems associated with low-dimensional and topological quantum materials.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666

    [2]

    Geim A K, Novoselov K S 2007Nat. Mater. 6 183

    [3]

    Fan Y C, Shen N H, Zhang F L, Zhao Q, Wu H J, Fu Q H, Wei Z Y, Li H Q, Soukoulis C M 2019Adv. Opt. Mater. 7 1800537

    [4]

    Lu W, Ling J W, Xiu F X, Sun D 2018Phys. Rev. B 98 104310

    [5]

    Hou L, Yang Y K, Li A L, Wang Q J, Li Q N, Wu M, Ji P C, Zhang Y J, Xiao Y M, Xu W, Xiu F X, Ding L 2023Phys. Rev. B 108 115416

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010Phys. Rev. Lett. 105136805

    [7]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012Nat. Nanotechnol. 7 699

    [8]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017Nat. Rev. Mater. 2 17033

    [9]

    Liu X, Hou L, Ji P C, Wang Q J, Wu M, Xiao Y M, Xu W, Ding L 2023Nanophotonics 12 4441

    [10]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014ACS Nano 8 4033

    [11]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014Nat. Commun. 5 4475

    [12]

    Mak K F, Lee C, Hone J 2010Phys. Rev. Lett. 105 136

    [13]

    Zhang S, Pei Y, Hu S, Wu N, Chen D Q, Lian C, Meng S 2023Chin. Phys. Lett. 40 077502

    [14]

    Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kena-Cohen S, Menon V M 2015Nat. Photonics 9 30

    [15]

    Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C de, Grosse C, Nijs B de, Mertens J, Tartakovskii A I, Baumberg J J 2017Nat. Commun. 8 1296

    [16]

    Verre R, Baranov D G, Munkhbat B, Cuadra J, Kall M, Shegai T 2019Nat. Nanotechnol. 14 679

    [17]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016Nano Lett. 16 1262

    [18]

    Hu G W, Krasnok A, Mazor Y, Qu C W, Alu A 2020Nano Lett. 20 3217

    [19]

    Sun B, Wang Z, Liu Z, Tan X, Liu X, Shi T, Zhou J, Liao G 2019Adv. Funct. Mater. 29 1900541

    [20]

    Leng Q, Su H, Liu J, Zhou L, Qin K, Wang Q, Fu J, Wu S, Zhang X 2021Nanophotonics 10 1871

    [21]

    Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021Nano Lett. 21 3083

    [22]

    Petrić M M, Kremser M, Barbone M, Nolinder A, Lyamkina A, Stier A V, Kaniber M, Müller K, Finley J J 2022Nano Lett. 22561

    [23]

    Zhu Y X, Yang J W, Abad-Arredondo J, Fernández-Domínguez A I, Garcia-Vidal F J, Natelson D 2024Nano Lett. 24 525

    [24]

    Wang C, Xu W, Mei H Y, Qin H, Zhao X N, Zhang C, Yuan H F, Zhang J, Xu Y, Li P, Li M 2019Opt. Lett. 44 4139

    [25]

    Liu J, Ding L, Zhao C X, Liang C N, Xiao Y M, Zhang J, Xu W 2019 IEEE Photon. J. 11 4800608

    [26]

    Guo T Y, Hou L, Xu W, Xiao Y M, Ding L 2022J. Opt. Soc. Am. B 39 1711

    [27]

    Ding L, Xu W, Zhao C, Wang S, Liu H 2015Opt. Lett. 404524

    [28]

    Maier S A 2007Plasmonics: Fundamentals and Applications(Springer) pp 21

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, doi: 10.7498/aps.73.20240668
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, doi: 10.7498/aps.72.20222171
    [3] 马少卿, 龚士香, 张微, 路承彪, 李小俚, 李英伟. 宽带微量太赫兹辐射促进神经元生长发育. 物理学报, doi: 10.7498/aps.71.20220636
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, doi: 10.7498/aps.71.20220817
    [5] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, doi: 10.7498/aps.70.20210084
    [6] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, doi: 10.7498/aps.70.20211677
    [7] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, doi: 10.7498/aps.70.20210445
    [8] 黄坤, 王腾飞, 姚激. 单层MoS2的热弹耦合非线性板模型. 物理学报, doi: 10.7498/aps.70.20210160
    [9] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [10] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, doi: 10.7498/aps.69.20201507
    [11] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, doi: 10.7498/aps.69.20200662
    [12] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, doi: 10.7498/aps.69.20191531
    [13] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [14] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, doi: 10.7498/aps.68.20182147
    [15] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, doi: 10.7498/aps.66.180701
    [16] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [17] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, doi: 10.7498/aps.66.247701
    [18] 梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒. THz谐振腔型石墨烯光电探测器的设计. 物理学报, doi: 10.7498/aps.65.168101
    [19] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, doi: 10.7498/aps.62.064101
    [20] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, doi: 10.7498/aps.61.064102
计量
  • 文章访问数:  101
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-23

/

返回文章
返回