搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用

闫忠宝 孙帅 张帅 张尧 史伟 盛泉 史朝督 张钧翔 张贵忠 姚建铨

引用本文:
Citation:

二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用

闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨

Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications

Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan
PDF
HTML
导出引用
  • 利用有限元分析软件COMSOL模拟包层管内壁涂敷有二氧化钒的太赫兹反谐振光纤, 研究二氧化钒的相变对反谐振光纤传输特性的影响. 研究表明, 在太赫兹波段, 二氧化钒的相变会促使反谐振光纤的反谐振周期发生极大的改变, 在此过程中, 光纤包层管对入射光束的作用效果由反谐振状态变为谐振状态, 在不改变反谐振光纤结构的情况下, 仅通过控制二氧化钒的相变即可实现对反谐振光纤纤芯中太赫兹波的有效调控. 二氧化钒相变对反谐振光纤的这种调控效果在太赫兹调控器件领域有很广泛的应用前景, 基于涂敷二氧化钒的反谐振光纤, 本文提出一种太赫兹光开关及一种偏振调控器. 其中, 在波长为120 μm处, 光开关处于不同状态时对应的光纤损耗分别为0.5 dB/m与110 dB/m, 并且通过激励光源诱导二氧化钒发生快速相变, 有望实现快速光开关. 在偏振调控器中, 可以对反谐振光纤纤芯中太赫兹波的偏振状态以及偏振方向进行控制, 偏振状态下光纤的双折射系数大于1.4 × 10–4.
    Terahertz (THz) wave is an electromagnetic wave with frequency in a range of 0.1–10 THz, which possesses excellent photonic and electronic properties. THz wave has higher penetration and lower photon energy to non-polar materials, which makes it possess great academic value in medical, non-destructive testing and other related fields. In addition, the features such as wide bandwidth and large communication capacity of THz wave allow it to be widely used in communication, radar detection and other applications. Despite its rapid development in recent years, THz technology is used still mainly in free space currently and it is difficult to control the transmission direction of THz wave over a long distance in free space. What is more, the transmission of THz waves in free space is affected usually by the dust and water vapor. For achieving the efficient transmission of THz waves, researchers have proposed a variety of THz waveguides, including plastic fiber, Bragg fiber, photonic crystal fiber and anti-resonant fiber (ARF). The ARF confines the incident beam within the air hole of fiber center by the anti-resonance effect, which has aroused great interest because of its simple structure, low transmission loss, high damage threshold, low dispersion, and high transmission bandwidth. At present, adjustable THz fiber devices based on ARF are still reported rarely. In the near-infrared band, researchers have combined ARF with vanadium dioxide (VO2) to realize the exceptional modulation effects. The VO2 is a metal oxide with insulator-metal phase transition when the ambient temperature is near 68 ℃, in which its electrical conductivity, dielectric constant and other properties will change drastically. In this paper, the VO2 is coated on the inner wall of the THz ARF cladding tubes, and the effect of the phase transition of VO2 on the propagation characteristics of the ARF is studied. Simulation results indicate that in the THz band, the phase transition of VO2 will cause the anti-resonance period of the ARF to change greatly, in which the confinement effect of the ARF cladding tubes on the incident beam is converted from anti-resonant state to resonant state. Without changing the structure of the ARF, the effective modulation on the THz wave in the core of the ARF can be achieved only by controlling the phase transition of VO2, which has a wide application prospect in the field of THz adjustable devices. In this paper, a THz optical switch and a polarization controller based on VO2-coated ARF are proposed. With the optical switch being on and off, the corresponding losses are 0.5 dB/m and 110 dB/m respectively at 120 μm. If phase transition of VO2 is induced by the excitation laser, it is expected to realize a fast-optical switch. Regarding the polarization controller, the polarization state and polarization direction of the THz wave in the core of the ARF can be controlled, and the birefringence coefficient of the ARF in the polarization state is more than 1.4 × 10–4.
      通信作者: 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075159)资助的课题
      Corresponding author: Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075159)
    [1]

    Zhong K, Shi W, Xu D G, Liu P X, Wang Y Y, Mei J L, Yan C, Fu S J, Yao J Q 2017 Sci. China Ser. E: Technol. Sci. 60 1801Google Scholar

    [2]

    Cassar Q, Al-Ibadi A, Mavarani L, Hillger P, Grzyb J, Grogan G M, Zimmer T, Pfeiffer U R, Guillet J P, Mounaix P 2018 Biomed. Opt. Express 9 2930Google Scholar

    [3]

    Zhang X, Guo Q, Chang T, Cui H L 2019 Polym. Test. 76 455Google Scholar

    [4]

    Chen Z, Ma X Y, Zhang B, Zhang Y X, Niu Z Q, Kuang N Y, Chen W J, Li L X, Li S Q 2019 China Commun. 16 1Google Scholar

    [5]

    Iwaszczuk K, Heiselberg H, Jepsen P U 2010 Opt. Express 18 26399Google Scholar

    [6]

    Hasan M R, Akter S 2017 Electron. Lett. 53 741Google Scholar

    [7]

    Barh A, Varshney R K, Agrawal G P, Rahman B M A, Pal B P 2015 Opt. Lett. 40 2107Google Scholar

    [8]

    Yao H Y, Jiang J Y, Cheng Y S, Chen Z Y, Her T H, Chang T H 2015 Opt. Express 23 27266Google Scholar

    [9]

    王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民 2015 物理学报 64 120702Google Scholar

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702Google Scholar

    [10]

    Yu F, Knight J C 2016 IEEE J. Sel. Top. Quantum Electron. 22 146Google Scholar

    [11]

    Kakiuchida H, Jin P, Nakao S, Tazawa M 2007 Jpn. J. Appl. Phys. 46 113Google Scholar

    [12]

    Liu H W, Wong L M, Wang S J, Tang S H, Zhang X H 2013 Appl. Phys. Lett. 103 151908Google Scholar

    [13]

    Shibuya K, Atsumi Y, Yoshida T, Sakakibara Y, Mori M, Sawa A 2019 Opt. Express 27 4147Google Scholar

    [14]

    Sánchez L, Lechago S, Sanchis P 2015 Opt. Lett. 40 1452Google Scholar

    [15]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F, Maier S A 2015 ACS Photonics 2 1306Google Scholar

    [16]

    Kim J T 2014 Opt. Lett. 39 3997Google Scholar

    [17]

    Huang Q, Ghimire I, Yang J, Fleer N, Chiang K S, Wang Y, Gao S, Wang P, Banerjee S, Lee H W H 2020 Opt. Lett. 45 4240Google Scholar

    [18]

    Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103Google Scholar

    [19]

    Liu X, Chen X, Parrott E P J, Han C, Humbert G, Crunteanu A, MacPherson P 2018 APL Photonics 3 051604Google Scholar

    [20]

    Wang S, Cai C, You M, Liu F, Wu M, Li S, Bao H, Kang L, Werner D H 2019 Opt. Express 27 19436Google Scholar

    [21]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [22]

    Park D J, Shin J H, Park K H, Ryu H C 2018 Opt. Express 26 17397Google Scholar

    [23]

    Chang T, Zhang X, Yang C, Sun Z, Cui H L 2017 Meas. Sci. Technol. 28 045002Google Scholar

    [24]

    Liang J, Ren L, Chen N, Zhou C 2013 Opt. Commun. 295 257Google Scholar

  • 图 1  VO2-ARF结构示意图

    Fig. 1.  Cross-section diagram of VO2-ARF.

    图 2  (a) VO2电导率σ不同时, 光纤的损耗随包层管壁厚t的变化; (b) VO2-ARF电磁损耗分布

    Fig. 2.  (a) Confinement loss (CL) of VO2-ARF as a function of cladding tube wall thickness (t) under different conductivity of VO2 (σ); (b) electromagnetic loss distribution of VO2-ARF.

    图 3  (a) VO2-ARF的损耗随包层管壁厚t以及VO2电导率σ的变化; (b) VO2-ARF损耗随包层管壁厚t以及VO2厚度t0的变化

    Fig. 3.  Confinement loss (CL) of VO2-ARF as a function of cladding tube wall thickness (t) and the conductivity of VO2 (σ); (b) confinement loss (CL) of VO2-ARF as a function of cladding tube wall thickness (t) and the thickness of VO2 (t0).

    图 4  (a) 光开关结构示意图; (b) 光开关处于“开”、“关”状态时, 光纤损耗随波长λ的变化曲线; (c) 光开关为开状态和(d)关状态时的电场分布图

    Fig. 4.  (a) Cross-section diagram of optical switch; (b) when the optical switch is on and off, confinement loss (CL) of ARF as a function of incident light wavelength (λ); electric field distribution diagram when optical switch is (c) on and (d) off.

    图 5  (a) 偏振调控器结构示意图; (b) 光纤实现偏振光传输时, 光纤不同偏振方向的有效折射率随激励光源光通量的变化曲线; (c) 光纤实现偏振光传输时, 光纤不同偏振方向的损耗随激励光源光通量的变化曲线

    Fig. 5.  (a) Cross-section diagram of polarization controller; (b) effective refractive index (neff) and (c) confinement loss (CL) of ARF in orthogonal polarization directions as a function of excitation fluences of the excitation laser when ARF realizes the polarized transmission.

  • [1]

    Zhong K, Shi W, Xu D G, Liu P X, Wang Y Y, Mei J L, Yan C, Fu S J, Yao J Q 2017 Sci. China Ser. E: Technol. Sci. 60 1801Google Scholar

    [2]

    Cassar Q, Al-Ibadi A, Mavarani L, Hillger P, Grzyb J, Grogan G M, Zimmer T, Pfeiffer U R, Guillet J P, Mounaix P 2018 Biomed. Opt. Express 9 2930Google Scholar

    [3]

    Zhang X, Guo Q, Chang T, Cui H L 2019 Polym. Test. 76 455Google Scholar

    [4]

    Chen Z, Ma X Y, Zhang B, Zhang Y X, Niu Z Q, Kuang N Y, Chen W J, Li L X, Li S Q 2019 China Commun. 16 1Google Scholar

    [5]

    Iwaszczuk K, Heiselberg H, Jepsen P U 2010 Opt. Express 18 26399Google Scholar

    [6]

    Hasan M R, Akter S 2017 Electron. Lett. 53 741Google Scholar

    [7]

    Barh A, Varshney R K, Agrawal G P, Rahman B M A, Pal B P 2015 Opt. Lett. 40 2107Google Scholar

    [8]

    Yao H Y, Jiang J Y, Cheng Y S, Chen Z Y, Her T H, Chang T H 2015 Opt. Express 23 27266Google Scholar

    [9]

    王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民 2015 物理学报 64 120702Google Scholar

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702Google Scholar

    [10]

    Yu F, Knight J C 2016 IEEE J. Sel. Top. Quantum Electron. 22 146Google Scholar

    [11]

    Kakiuchida H, Jin P, Nakao S, Tazawa M 2007 Jpn. J. Appl. Phys. 46 113Google Scholar

    [12]

    Liu H W, Wong L M, Wang S J, Tang S H, Zhang X H 2013 Appl. Phys. Lett. 103 151908Google Scholar

    [13]

    Shibuya K, Atsumi Y, Yoshida T, Sakakibara Y, Mori M, Sawa A 2019 Opt. Express 27 4147Google Scholar

    [14]

    Sánchez L, Lechago S, Sanchis P 2015 Opt. Lett. 40 1452Google Scholar

    [15]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F, Maier S A 2015 ACS Photonics 2 1306Google Scholar

    [16]

    Kim J T 2014 Opt. Lett. 39 3997Google Scholar

    [17]

    Huang Q, Ghimire I, Yang J, Fleer N, Chiang K S, Wang Y, Gao S, Wang P, Banerjee S, Lee H W H 2020 Opt. Lett. 45 4240Google Scholar

    [18]

    Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103Google Scholar

    [19]

    Liu X, Chen X, Parrott E P J, Han C, Humbert G, Crunteanu A, MacPherson P 2018 APL Photonics 3 051604Google Scholar

    [20]

    Wang S, Cai C, You M, Liu F, Wu M, Li S, Bao H, Kang L, Werner D H 2019 Opt. Express 27 19436Google Scholar

    [21]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [22]

    Park D J, Shin J H, Park K H, Ryu H C 2018 Opt. Express 26 17397Google Scholar

    [23]

    Chang T, Zhang X, Yang C, Sun Z, Cui H L 2017 Meas. Sci. Technol. 28 045002Google Scholar

    [24]

    Liang J, Ren L, Chen N, Zhou C 2013 Opt. Commun. 295 257Google Scholar

  • [1] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [4] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [5] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [6] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变. 物理学报, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [7] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [8] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性. 物理学报, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [9] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [10] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [11] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [12] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器. 物理学报, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [13] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [14] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [15] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [16] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [17] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [18] 曾祥楷, 饶云江. 长周期光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8607-8614. doi: 10.7498/aps.59.8607
    [19] 曾祥楷, 饶云江. Bragg光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [20] 朱涛, 史翠华, 饶云江, 郑建成. CO2激光写入长周期光纤光栅的折变理论及实验研究. 物理学报, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
计量
  • 文章访问数:  3220
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-04-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回