搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹双空芯光纤定向耦合器

姜子伟 白晋军 侯宇 王湘晖 常胜江

引用本文:
Citation:

太赫兹双空芯光纤定向耦合器

姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江

Terahertz dual air core fiber directional coupler

Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang
PDF
导出引用
  • 设计了一种低损耗太赫兹双芯光子带隙光纤定向耦合器. 采用全矢量有限元法对光纤的耦合特性、损耗和色散进行了理论分析. 结果表明, 这种光纤定向耦合器在1.55–1.80 THz范围内耦合长度小于1.8 cm, 能够实现0.07 THz范围内窄带耦合, 且其损耗系数低于0.02 cm-1. 这种耦合器将在太赫兹窄带滤波、波分复用、开关和偏振分离等技术中有潜在应用价值.
    A novel low-loss dual-core fiber directional coupler for terahertz raditional is proposed, Coupling properties, loss and group velocity dispersion of the fibers are investigated by the full-vector finite-element method (FEM). The simulation results demonstrate that the coupling length of this coupler is less than 1.8 cm between 1.55 and 1.80 THz, and the coupling broadband of 0.07THz can be realized. And the loss coefficient of the coupler is less than 0.02 cm-1. The directional coupler has potential applications in narrowband filtering, wavelength-division multiplexing, switching, polarization splitter and so on.
    • 基金项目: 国家高技术研究发展计划项目(批准号: 2011AA010205)、国家自然科学基金(批准号: 61171027)、天津市自然科学基金重点项目(批准号: 10JCZDJC15200)和教育部博士点基金(批准号: 20090031110033)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant No. 61171027), the Natural Science Foundation of Tianjin of China (Grant No. 10JCZDJC15200) and the Doctoral Fund of Ministry of Education of China (Grant No. 20090031110033).
    [1]

    Stoik C D, Bohn M J, Blackshire J L 2008 Opt. Express 16 17039

    [2]

    Han P Y, Cho G C, Zhang X C 2000 Opt. Lett. 25 242

    [3]

    Tielrooij K J, Timmer R L A, Bakker H J, Bonn M 2009 Phys. Rev. Lett. 198303

    [4]

    Moller L, Feserrici J, Sinyukov A 2008 Opt. Lett. 33 393

    [5]

    Danylov A, Goyette T M,Waldman J 2010 Optics Express 18 16264

    [6]

    Hunsche S, Koch M, Brener I 1998 Optics Communications 53 22

    [7]

    Ozaki Y 2007 Analytical Sciences 23 767

    [8]

    Yue W, Wang W, Yan H 2005 Proceedings of the SPIE 56 568

    [9]

    Ma X J, Zhao H W, Dai B, Liu G F 2008 Acta Phys. Sin. 57 3429 (in Chinese) [马晓菁, 赵红卫, 代斌, 刘桂锋 2008 物理学报 57 3429]

    [10]

    Atakaramians S, Afshar V S, Fischer M B 2009 ptics Communications 282 36

    [11]

    Chen H, Chen D, Hong Z 2009 Appl. Opt. 48 3943

    [12]

    Chen D, Tam Y H 2010 Journal of Lightwave Technology 28 1858

    [13]

    Hou Y, Fan F, Zhang H, Wang X H, Chang S J 2012 Photonics Technolgy Letters 24 637

    [14]

    Dupuis A, Allard J-F, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012

    [15]

    Nielsen K, Rasmussen H K, Jepsen P U, Bang O 2010 Opt. Lett. 35 2879

    [16]

    Bai J J, Wang C H, Hou Y, Fan F, Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese) [白晋军, 王昌辉, 侯宇, 范飞, 常胜江 2012 物理学报 61 108701]

    [17]

    Bora Ung, Anna Mazhorova, Alexandre Dupuis 2011 Opt. Express 19 B848

    [18]

    Wang Z, Kai G, Liu Y, Liu J, Zhang C, Sun T, Wang C, Zhang W, Yuan S, Dong X 2005 Opt. Lett. 30 2542

    [19]

    Saitoh K,Sato Y, Koshiba M 2003 Opt. Express 11 3188

    [20]

    Atakaramians S, Afshar V S, Fischer B M, Abbott D, Monro T M 2008 Opt. Express 16 8845

  • [1]

    Stoik C D, Bohn M J, Blackshire J L 2008 Opt. Express 16 17039

    [2]

    Han P Y, Cho G C, Zhang X C 2000 Opt. Lett. 25 242

    [3]

    Tielrooij K J, Timmer R L A, Bakker H J, Bonn M 2009 Phys. Rev. Lett. 198303

    [4]

    Moller L, Feserrici J, Sinyukov A 2008 Opt. Lett. 33 393

    [5]

    Danylov A, Goyette T M,Waldman J 2010 Optics Express 18 16264

    [6]

    Hunsche S, Koch M, Brener I 1998 Optics Communications 53 22

    [7]

    Ozaki Y 2007 Analytical Sciences 23 767

    [8]

    Yue W, Wang W, Yan H 2005 Proceedings of the SPIE 56 568

    [9]

    Ma X J, Zhao H W, Dai B, Liu G F 2008 Acta Phys. Sin. 57 3429 (in Chinese) [马晓菁, 赵红卫, 代斌, 刘桂锋 2008 物理学报 57 3429]

    [10]

    Atakaramians S, Afshar V S, Fischer M B 2009 ptics Communications 282 36

    [11]

    Chen H, Chen D, Hong Z 2009 Appl. Opt. 48 3943

    [12]

    Chen D, Tam Y H 2010 Journal of Lightwave Technology 28 1858

    [13]

    Hou Y, Fan F, Zhang H, Wang X H, Chang S J 2012 Photonics Technolgy Letters 24 637

    [14]

    Dupuis A, Allard J-F, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012

    [15]

    Nielsen K, Rasmussen H K, Jepsen P U, Bang O 2010 Opt. Lett. 35 2879

    [16]

    Bai J J, Wang C H, Hou Y, Fan F, Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese) [白晋军, 王昌辉, 侯宇, 范飞, 常胜江 2012 物理学报 61 108701]

    [17]

    Bora Ung, Anna Mazhorova, Alexandre Dupuis 2011 Opt. Express 19 B848

    [18]

    Wang Z, Kai G, Liu Y, Liu J, Zhang C, Sun T, Wang C, Zhang W, Yuan S, Dong X 2005 Opt. Lett. 30 2542

    [19]

    Saitoh K,Sato Y, Koshiba M 2003 Opt. Express 11 3188

    [20]

    Atakaramians S, Afshar V S, Fischer B M, Abbott D, Monro T M 2008 Opt. Express 16 8845

计量
  • 文章访问数:  2551
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2012-06-26
  • 刊出日期:  2013-01-05

太赫兹双空芯光纤定向耦合器

  • 1. 南开大学, 现代光学研究所, 天津 300071;
  • 2. 天津工业大学, 电子与信息工程学院, 天津 300387
    基金项目: 

    国家高技术研究发展计划项目(批准号: 2011AA010205)、国家自然科学基金(批准号: 61171027)、天津市自然科学基金重点项目(批准号: 10JCZDJC15200)和教育部博士点基金(批准号: 20090031110033)资助的课题.

摘要: 设计了一种低损耗太赫兹双芯光子带隙光纤定向耦合器. 采用全矢量有限元法对光纤的耦合特性、损耗和色散进行了理论分析. 结果表明, 这种光纤定向耦合器在1.55–1.80 THz范围内耦合长度小于1.8 cm, 能够实现0.07 THz范围内窄带耦合, 且其损耗系数低于0.02 cm-1. 这种耦合器将在太赫兹窄带滤波、波分复用、开关和偏振分离等技术中有潜在应用价值.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回