搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹双芯反谐振光纤的设计及其耦合特性

张尧 孙帅 闫忠宝 张果 史伟 盛泉 房强 张钧翔 史朝督 张贵忠 姚建铨

引用本文:
Citation:

太赫兹双芯反谐振光纤的设计及其耦合特性

张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨
cstr: 32037.14.aps.69.20200662

Design and coupling characteristics of terahertz dual-core anti-resonant fiber

Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan
cstr: 32037.14.aps.69.20200662
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 设计了一种新型的太赫兹双芯反谐振光纤, 利用有限元分析法对光纤的损耗特性、双芯之间的耦合特性等进行了理论分析. 结果表明, 单芯反谐振光纤在一定范围内改变内包层管的排列分布, 其传输特性并不会受到明显的影响, 据此可以改变双芯光纤的内包层管的排列分布, 从而利用模式泄漏耦合机制在太赫兹波段实现双芯反谐振光纤的定向耦合. 本文通过改变纤芯距离和纤芯间的间隙大小, 在2.5 THz的传输频率下实现了耦合长度为0.72 m的定向耦合, 这种太赫兹双芯反谐振光纤将在太赫兹光开关、调制器和耦合器等太赫兹光学器件中具有重要的应用价值.
    The THz wave has good photonic and electronic properties, and has high penetration for non-polar materials, but its own photon energy is low. In addition, the THz wave also has characteristics such as wide bandwidth and large communication capacity, thereby making the THz wave possess important academic value and wide application prospects in the fields of non-destructive testing, biomedical imaging and communication. The development of THz technology requires not only high-performance THz waveguide technology for efficient transmission of THz waves, but also important optical devices such as optical switches, modulators, and couplers that are suitable for THz bands. With the in-depth study of THz waveguide technology, researchers have proposed many high-performance THz waveguide structures, such as metal hollow core tube waveguide, parallel metal plate waveguide, photonic crystal fiber and microstructure hollow core fibers, among which hollow-core photonic crystal fibers and hollow-core anti-resonant fibers (HC-ARF) have developed rapidly in recent years. So far, THz single-mode single-polarization fiber and high-birefringence fiber have been widely studied, but the researches on the fiber structure and devices that realize THz wave directional coupling are relatively rare. In this paper, we study the influences of the arrangement and distribution of the inner and outer claddings of HC-ARF on transmission characteristics, and thus design a new type of THz dual-core anti-resonant fiber. Compared with ordinary quartz fiber couplers and dual-core photonic crystal fibers, it can utilize a relatively simple structure and achieve directional coupling above 2 THz. Using the finite element analysis method to theoretically analyze the loss characteristics and coupling characteristics of the fiber, it is found that HC-ARF changes the periodic arrangement and distribution of the inner cladding tube within a certain range, which can achieve mode leakage without affecting the fiber transmission characteristics. So the THz dual-core anti-resonant fiber can be designed by using the mode leakage coupling mechanism. By changing the core distance and core gap size, the directional coupling with a coupling length of 0.72 m is realized at a transmission frequency of 2.5 THz. This terahertz dual-core anti-resonance fiber will have an important application value in terahertz optical devices such as terahertz optical switches, modulators and couplers.
      通信作者: 史伟, shiwei@tju.edu.cn
      Corresponding author: Shi Wei, shiwei@tju.edu.cn
    [1]

    Zhong K, Shi W, Xu D G, Liu P X, Wang Y Y, Mei J L, Yan C, F u, S J, Yao J Q 2017 Sci. China Technol. Sc. 60 1801Google Scholar

    [2]

    Homare M, Yoshiaki S, Isao Y, Shigenori N, Tetsuya Y, Chiko O 2020 Opt. Express 28 12279Google Scholar

    [3]

    Cao Y Q, Huang P J, Li X, Ge W T, Hou D B, Zhang G X 2018 Phys. Med. Biol. 63 035016Google Scholar

    [4]

    Withayachumnankul W, Yamada R, Fujita M, Nagatsuma T 2018 APL Photonics 3 051707Google Scholar

    [5]

    Otter W J, Ridler N M, Yasukochi H, Soeda K, Konishi K, Yumoto J, Kuwata-Gonokami M, Lucyszyn S 2017 Electron Lett. 53 471Google Scholar

    [6]

    Yoo S, Park J, Choo H 2020 Results Phys. 16 102881Google Scholar

    [7]

    Islam M S, Sultana J, Atai J, Islam M R, Abbott D 2017 Optik 145 398Google Scholar

    [8]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [9]

    Wei C L, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar

    [10]

    Hasanuzzaman G K M, Iezekiel S, Markos C, Habib M S 2018 Opt. Commun. 426 477

    [11]

    Zhang W, Lian Z G, Trevor B, Wang X, Lou S Q 2019 J. Opt. 21 025001Google Scholar

    [12]

    Wang X Y, Li S G, Liu Q, Wang G Y, Zhao Y Y 2017 Plasmonics 12 1325Google Scholar

    [13]

    Sultana J, Islam M S, Faisal M, Islam M R, Ng B W, Ebendorff-Heidepriem H, Abbott D 2018 Opt. Commun. 407 92Google Scholar

    [14]

    Hasan M R, Akter S, Khatun T, Rifat A A, Anower M S 2017 Opt. Eng. 56 043108Google Scholar

    [15]

    Wang D D, Mu C L, Kong D P, Guo C Y 2019 Chin. Phys. B 28 118701Google Scholar

    [16]

    Dupuis A, Allard J, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012Google Scholar

    [17]

    姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江 2013 物理学报 62 028702Google Scholar

    Jiang Z W, Bai J J, Hou Y, Wang X H, Chang S J 2013 Acta Phys. Sin. 62 028702Google Scholar

    [18]

    Busch S F, Weidenbach M, Balzer J C, Koch M 2015 J. Infrared Milli. Terahz. Waves 37 303Google Scholar

    [19]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J D, Jen A K, Williams J C, Twieg R J 2011 J. Appl. Phys. 109 043505Google Scholar

    [20]

    Liang J, Ren L Y, Chen N N, Zhou C H 2013 Opt. Commun. 295 257Google Scholar

    [21]

    Li S H, Wang J 2015 Opt. Express 23 18736Google Scholar

  • 图 1  端面示意图 (a) HC-ARF基础结构; (b) O-ARF; (c) I-ARF

    Fig. 1.  The cross-section of (a) HC-ARF, (b) O-ARF, and (c) I-ARF.

    图 2  I-ARF与O-ARF的限制损耗和纤芯能量占比随φ的变化曲线

    Fig. 2.  Confinement loss and energy rate as a function of φ for the fundamental mode in I-ARF and O-ARF.

    图 3  模场图 (a) HC-ARF; (b) φ = 30°, O-ARF; (c) φ = 50°, O-ARF

    Fig. 3.  Fundamental mode distribution of (a) HC-ARF, and O-ARF of φ = 30°(b) and φ = 50° (c).

    图 4  模场图 (a) HC-ARF; (b) φ = 40°, I-ARF; (c) φ = 60°, I-ARF

    Fig. 4.  Fundamental mode distribution of (a) HC-ARF, and I-ARF of φ = 40°(b) and φ = 60° (c).

    图 5  (a) 镜像双芯反谐振光纤端面示意图; x偏振方向上的对称模s (b)和反对称模a (c)的模场图

    Fig. 5.  (a) The cross-section of dual-core HC-ARF with mirror composition; the fundamental mode distribution of even-mode s (b) and odd-mode a (c) at x-polarization.

    图 6  (a) 镜像双芯反谐振光纤的耦合长度随φ的变化曲线; 光纤在x偏振方向上的对称模s的模场图 (b) φ = 30°; (c) φ = 42°; (d) φ = 60°

    Fig. 6.  (a) Coupling length as a function of φ for dual-core HC-ARF with mirror composition and the fundamental mode distribution of even-mode at x-polarization when (b) φ = 40°, (c) φ = 42° and (d) φ = 60°.

    图 7  (a) 包层重构型双芯反谐振光纤端面示意图; x偏振方向上的模场图 (b) 对称模s, (c) 反对称模a

    Fig. 7.  (a) The cross-section of dual-core HC-ARF with cladding reconstruction; the fundamental mode distribution of (b) even-mode s and (c) odd-mode a at x-polarization.

    图 8  (a) 包层重构型双芯反谐振光纤在不同Dr下的耦合长度随dr的变化曲线; (b) 包层重构型双芯反谐振光纤在不同Dr下的纤芯能量占比随dr的变化曲线

    Fig. 8.  (a) Coupling length (Lc) and (b) energy rate (R) as a function of dr under different Dr for dual-core HC-ARF with cladding reconstruction.

  • [1]

    Zhong K, Shi W, Xu D G, Liu P X, Wang Y Y, Mei J L, Yan C, F u, S J, Yao J Q 2017 Sci. China Technol. Sc. 60 1801Google Scholar

    [2]

    Homare M, Yoshiaki S, Isao Y, Shigenori N, Tetsuya Y, Chiko O 2020 Opt. Express 28 12279Google Scholar

    [3]

    Cao Y Q, Huang P J, Li X, Ge W T, Hou D B, Zhang G X 2018 Phys. Med. Biol. 63 035016Google Scholar

    [4]

    Withayachumnankul W, Yamada R, Fujita M, Nagatsuma T 2018 APL Photonics 3 051707Google Scholar

    [5]

    Otter W J, Ridler N M, Yasukochi H, Soeda K, Konishi K, Yumoto J, Kuwata-Gonokami M, Lucyszyn S 2017 Electron Lett. 53 471Google Scholar

    [6]

    Yoo S, Park J, Choo H 2020 Results Phys. 16 102881Google Scholar

    [7]

    Islam M S, Sultana J, Atai J, Islam M R, Abbott D 2017 Optik 145 398Google Scholar

    [8]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [9]

    Wei C L, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar

    [10]

    Hasanuzzaman G K M, Iezekiel S, Markos C, Habib M S 2018 Opt. Commun. 426 477

    [11]

    Zhang W, Lian Z G, Trevor B, Wang X, Lou S Q 2019 J. Opt. 21 025001Google Scholar

    [12]

    Wang X Y, Li S G, Liu Q, Wang G Y, Zhao Y Y 2017 Plasmonics 12 1325Google Scholar

    [13]

    Sultana J, Islam M S, Faisal M, Islam M R, Ng B W, Ebendorff-Heidepriem H, Abbott D 2018 Opt. Commun. 407 92Google Scholar

    [14]

    Hasan M R, Akter S, Khatun T, Rifat A A, Anower M S 2017 Opt. Eng. 56 043108Google Scholar

    [15]

    Wang D D, Mu C L, Kong D P, Guo C Y 2019 Chin. Phys. B 28 118701Google Scholar

    [16]

    Dupuis A, Allard J, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012Google Scholar

    [17]

    姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江 2013 物理学报 62 028702Google Scholar

    Jiang Z W, Bai J J, Hou Y, Wang X H, Chang S J 2013 Acta Phys. Sin. 62 028702Google Scholar

    [18]

    Busch S F, Weidenbach M, Balzer J C, Koch M 2015 J. Infrared Milli. Terahz. Waves 37 303Google Scholar

    [19]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J D, Jen A K, Williams J C, Twieg R J 2011 J. Appl. Phys. 109 043505Google Scholar

    [20]

    Liang J, Ren L Y, Chen N N, Zhou C H 2013 Opt. Commun. 295 257Google Scholar

    [21]

    Li S H, Wang J 2015 Opt. Express 23 18736Google Scholar

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [4] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [6] 汪静丽, 陈子玉, 陈鹤鸣. 基于夹层结构的偏振无关1×2定向耦合型解复用器的设计. 物理学报, 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [7] 吴倩, 张诸宇, 郭晓晨, 施伟华. 基于光子晶体光纤交叉敏感分离的磁场温度传感研究. 物理学报, 2018, 67(18): 184212. doi: 10.7498/aps.67.20180680
    [8] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [9] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [10] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [11] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器. 物理学报, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [12] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [13] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [14] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [15] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [16] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [17] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [19] 李齐良, 谢玉永, 朱殷芳, 赵知劲, 王天枢, 钱 胜, 林理彬. 具有高阶耦合色散系数三芯光纤耦合器非线性光开关特性的研究. 物理学报, 2008, 57(9): 5651-5661. doi: 10.7498/aps.57.5651
    [20] 俞重远, 张晓光, 刘秀敏. 三芯非线性光纤耦合器中的短脉冲光开关. 物理学报, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
计量
  • 文章访问数:  8017
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-04
  • 修回日期:  2020-06-28
  • 上网日期:  2020-10-12
  • 刊出日期:  2020-10-20

/

返回文章
返回