搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波

闫健 任志伟 钟智勇

引用本文:
Citation:

Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波

闫健, 任志伟, 钟智勇

Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler

Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong
PDF
HTML
导出引用
  • 介绍了一种基于Y3Fe5O12和CoFeB复合结构耦合的新型定向耦合器, 并利用微磁学仿真软件Mumax3及其配套工具链分析了自旋波在其中的传播特性. 通过在Y3Fe5O12定向耦合器中添加一种高饱和磁化强度材料(CoFeB)来增强耦合波导的耦合效率, 并从器件的尺寸形状、内部等效场以及耦合机理等角度分析了其变化原因. 结果表明, 相较于传统的定向耦合器, 这种复合结构能够极大地降低自旋波在耦合波导间的耦合长度. 从应用的角度看, 在功能相同的情况下, 整个器件的长度可以缩短数倍, 具有更好的发展前景.
    The spin-wave coupling device is used as a connection unit to solve the connection problem between spin-wave devices. However, the current size is too large in comparison with the nano-scale process, which is caused by the low efficiency of the spin wave within it. Therefore, we propose the spin-wave directional coupler based on Y3Fe5O12-CoFeB coupling which can improve the current dilemma to a certain extent. By filling the gap layer of two spin-wave waveguides (Y3Fe5O12) placed in parallel with CoFeB material, it is found that the dispersion relationship of the spin wave changes in the data calculation of the micromagnetic simulation software Mumax3. The existence of CoFeB makes the transmission efficiency of the spin wave between the two waveguides higher than in the case without any filling, the enhancement effect is about 4 times where coupling length is reduced from the original 2000 nm to 500 nm, which is conducive to the miniaturization and integration of the spin-wave directional coupler design. From the perspective of the entire device, further analysis indicates that owing to the high saturation magnetization of CoFeB (approximately 8 times that of Y3Fe5O12), the effective field in the Y3Fe5O12-CoFeB directional coupler is greatly enhanced, which leads the spin wave dispersion curve in the waveguide to change. At the same time, the energy of the entire system also increases several times, which is mainly caused by the increase of dipole energy and exchange energy. Then a greater contribution of dipole energy is obtained by changing the size of the device. After that, we study the relationship between the coupling length and the device size and the external magnetic field, then draw a general rule which can play a role in designing any directional couplers with similar structures. Finally, our view points are given from the different spin wave excitation frequencies, gap layer filling materials, internal roughness of the directional coupler, and spin wave lifetime by considering the problems that may occur in practical applications with the Y3Fe5O12-CoFeB directional coupler. In conclusion, our proposed Y3Fe5O12-CoFeB directional coupler structure can effectively enhance the coupling efficiency, and it can also provide a new idea for the application of the interaction between composite materials.
      通信作者: 钟智勇, zzy@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61734002)资助的课题
      Corresponding author: Zhong Zhi-Yong, zzy@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61734002)
    [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng. 19 41Google Scholar

    [2]

    Sun H, Guo X, Facchetti A 2020 Chem 6 1310Google Scholar

    [3]

    Zasedatelev A V, Baranikov A V, Urbonas D, et al. 2019 Nat. Photonics 13 378Google Scholar

    [4]

    Toriumi A, Nishimura T 2018 Jpn. J. Appl. Phys. 57 010101Google Scholar

    [5]

    Haensch W, Nowak E J, Dennard R H, et al. 2006 IBM J. Res. Dev. 50 339Google Scholar

    [6]

    Zhao X, Wang Z, Gao L, Li Y, Wang S 2021 Tsinghua Sci. Technol. 26 536Google Scholar

    [7]

    Wang W, Chen J, Wang J, Chen J, Liu J, Gong Z 2020 IEEE Trans. Ind. Inform. 16 6124Google Scholar

    [8]

    Ozawa T, Price H M, Amo A, et al. 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [9]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [10]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [11]

    Manchon A, Zelezny J, Miron I M, et al. 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [12]

    Mahmoud A N, Vanderveken F, Adelmann C, Ciubotaru F, Cotofana S, Hamdioui S 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 536Google Scholar

    [13]

    Petti D 2020 Nat. Electron. 3 736Google Scholar

    [14]

    Wang Q, Kewenig M, Schneider M, et al. 2020 Nat. Electron. 3 765Google Scholar

    [15]

    Feng F, Wei S B, Li L, Min C J, Yuan X C, Somekh M 2019 Opt. Express 27 27536Google Scholar

    [16]

    Sun K, Vittoria C 1991 IEEE Trans. Microw. Theory Tech. 39 339Google Scholar

    [17]

    Friedrich L, Dannberg P, Wachter C, Hennig T, Brauer A, Karthe W 1997 Opt. Commun. 137 239Google Scholar

    [18]

    Sadovnikov A V, Beginin E N, Sheshukova S E, Romanenko D V, Sharaevskii Y P, Nikitov S A 2015 Appl. Phys. Lett. 107 202405Google Scholar

    [19]

    Sadovnikov A V, Grachev A A, Odintsov S A, Sheshukova S E, Sharaevskii Y P, Nikitov S A 2017 IEEE Magn. Lett. 8 3109904Google Scholar

    [20]

    Sadovnikov A V, Grachev A A, Beginin E N, Sheshukova S E, Sharaevskii Y P, Nikitov S A 2017 Phys. Rev. Appl. 7 014013Google Scholar

    [21]

    Sadovnikov A V, Odintsov S A, Beginin E N, Sheshukova S E, Sharaevskii Y P, Nikitov S A 2017 IEEE Trans. Magn. 53 2801804Google Scholar

    [22]

    Ren Z, Liu S, Jin L, Wen T, Liao Y, Tang X, Zhang H, Zhong Z 2019 Sci. Rep. 9 7093Google Scholar

    [23]

    Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak A V 2018 Sci. Adv. 4 e1701517Google Scholar

    [24]

    Balashov T, Buczek P, Sandratskii L, Ernst A, Wulfhekel W 2014 J. Phys. Condens. Matter 26 394007Google Scholar

    [25]

    Mahmoud A, Ciubotaru F, Vanderveken F, et al. 2020 J. Appl. Phys. 128 161101Google Scholar

    [26]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [27]

    Qin H, Both G J, Hamalainen S J, Yao L, van Dijken S 2018 Nat. Commun. 9 5445Google Scholar

  • 图 1  YIG-CoFeB自旋波定向耦合器结构示意图

    Fig. 1.  Schematic diagram of the structure of YIG-CoFeB spin wave directional coupler.

    图 2  (a) 色散曲线求解中激励场在频域下的显示; (b) 孤立YIG波导中的色散曲线

    Fig. 2.  (a) Display of the excitation field in the frequency domain in the solution of the dispersion curve; (b) dispersion curve of isolated YIG waveguide.

    图 3  间隙处分别填充(a) Air和(b) CoFeB情况下的自旋波色散图

    Fig. 3.  Spin wave dispersion curve when the gap is filled with (a) Air and (b) CoFeB.

    图 4  (a) 定向耦合器的输出随着波导长度变化的关系图; (b) 2.88 GHz下间隙处填充Air和CoFeB的定向耦合器工作过程中自旋波传播彩图

    Fig. 4.  (a) Relationship between the output of the directional coupler and the length of the waveguide; (b) color image of spin wave propagation during operation of the directional coupler filled with Air and CoFeB in the gap at 2.88 GHz.

    图 5  间隙处填充Air和CoFeB的定向耦合器中内部有效场分布

    Fig. 5.  Internal effective field distribution in the directional coupler filled with Air and CoFeB at the gap.

    图 6  (a) 耦合长度随CoFeB宽度的变化; (b) 不同CoFeB宽度下器件的内部能量值

    Fig. 6.  (a) Coupling length varies with the width of CoFeB; (b) the internal energy value of the device under different CoFeB widths.

    图 7  耦合长度随着(a) YIG波导宽度、(b) 波导厚度、(c) 间隙宽度和(d) 外磁场的变化

    Fig. 7.  Coupling length varies with (a) YIG waveguide width, (b) waveguide thickness, (c) gap width, and (d) external magnetic field.

    图 8  不同频率下定向耦合器的耦合长度

    Fig. 8.  Coupling length of directional coupler at different frequencies.

  • [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng. 19 41Google Scholar

    [2]

    Sun H, Guo X, Facchetti A 2020 Chem 6 1310Google Scholar

    [3]

    Zasedatelev A V, Baranikov A V, Urbonas D, et al. 2019 Nat. Photonics 13 378Google Scholar

    [4]

    Toriumi A, Nishimura T 2018 Jpn. J. Appl. Phys. 57 010101Google Scholar

    [5]

    Haensch W, Nowak E J, Dennard R H, et al. 2006 IBM J. Res. Dev. 50 339Google Scholar

    [6]

    Zhao X, Wang Z, Gao L, Li Y, Wang S 2021 Tsinghua Sci. Technol. 26 536Google Scholar

    [7]

    Wang W, Chen J, Wang J, Chen J, Liu J, Gong Z 2020 IEEE Trans. Ind. Inform. 16 6124Google Scholar

    [8]

    Ozawa T, Price H M, Amo A, et al. 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [9]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [10]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [11]

    Manchon A, Zelezny J, Miron I M, et al. 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [12]

    Mahmoud A N, Vanderveken F, Adelmann C, Ciubotaru F, Cotofana S, Hamdioui S 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 536Google Scholar

    [13]

    Petti D 2020 Nat. Electron. 3 736Google Scholar

    [14]

    Wang Q, Kewenig M, Schneider M, et al. 2020 Nat. Electron. 3 765Google Scholar

    [15]

    Feng F, Wei S B, Li L, Min C J, Yuan X C, Somekh M 2019 Opt. Express 27 27536Google Scholar

    [16]

    Sun K, Vittoria C 1991 IEEE Trans. Microw. Theory Tech. 39 339Google Scholar

    [17]

    Friedrich L, Dannberg P, Wachter C, Hennig T, Brauer A, Karthe W 1997 Opt. Commun. 137 239Google Scholar

    [18]

    Sadovnikov A V, Beginin E N, Sheshukova S E, Romanenko D V, Sharaevskii Y P, Nikitov S A 2015 Appl. Phys. Lett. 107 202405Google Scholar

    [19]

    Sadovnikov A V, Grachev A A, Odintsov S A, Sheshukova S E, Sharaevskii Y P, Nikitov S A 2017 IEEE Magn. Lett. 8 3109904Google Scholar

    [20]

    Sadovnikov A V, Grachev A A, Beginin E N, Sheshukova S E, Sharaevskii Y P, Nikitov S A 2017 Phys. Rev. Appl. 7 014013Google Scholar

    [21]

    Sadovnikov A V, Odintsov S A, Beginin E N, Sheshukova S E, Sharaevskii Y P, Nikitov S A 2017 IEEE Trans. Magn. 53 2801804Google Scholar

    [22]

    Ren Z, Liu S, Jin L, Wen T, Liao Y, Tang X, Zhang H, Zhong Z 2019 Sci. Rep. 9 7093Google Scholar

    [23]

    Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak A V 2018 Sci. Adv. 4 e1701517Google Scholar

    [24]

    Balashov T, Buczek P, Sandratskii L, Ernst A, Wulfhekel W 2014 J. Phys. Condens. Matter 26 394007Google Scholar

    [25]

    Mahmoud A, Ciubotaru F, Vanderveken F, et al. 2020 J. Appl. Phys. 128 161101Google Scholar

    [26]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [27]

    Qin H, Both G J, Hamalainen S J, Yao L, van Dijken S 2018 Nat. Commun. 9 5445Google Scholar

  • [1] 刘想, 王希光, 李志雄, 郭光华. 铁磁畴壁中自旋极化电流诱导的左旋极化自旋波. 物理学报, 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [2] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件. 物理学报, 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [3] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [4] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [5] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [6] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [7] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [8] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [9] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [10] 肖金标, 李文亮, 夏赛赛, 孙小菡. 梯形截面硅基水平多槽纳米线定向耦合器全矢量分析. 物理学报, 2012, 61(12): 124216. doi: 10.7498/aps.61.124216
    [11] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响. 物理学报, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [12] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [13] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [14] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [15] 朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴. 一种实现光子晶体波导定向耦合型多路光均分的新方法. 物理学报, 2009, 58(2): 1014-1019. doi: 10.7498/aps.58.1014
    [16] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [17] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [18] 李齐良, 谢玉永, 朱殷芳, 赵知劲, 王天枢, 钱 胜, 林理彬. 具有高阶耦合色散系数三芯光纤耦合器非线性光开关特性的研究. 物理学报, 2008, 57(9): 5651-5661. doi: 10.7498/aps.57.5651
    [19] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] 俞重远, 张晓光, 刘秀敏. 三芯非线性光纤耦合器中的短脉冲光开关. 物理学报, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
计量
  • 文章访问数:  4952
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-05-04
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回