搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co纳米线磁矩反转动态过程的有限元微磁学模拟

陆海鹏 韩满贵 邓龙江 梁迪飞 欧雨

引用本文:
Citation:

Co纳米线磁矩反转动态过程的有限元微磁学模拟

陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨

Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires

Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu
PDF
导出引用
  • 采用有限元微磁学模拟方法研究了Co纳米线在不同外加恒磁场下磁矩的翻转过程.研究结果表明在直径为10 nm的Co纳米线内,经过一定的形核时间将在其一端形成一个反向磁畴.磁畴壁的类型为横向畴壁,该畴壁将在一外加恒定磁场的驱动下匀速地从一端运动到另一端.畴壁的运动速度与外加磁场大小呈线性关系.在H为1000 kA/m时,发现在纳米线的两端均会形成一个“头对头”的反向磁畴.计算结果表明,畴壁内磁矩的方向旋转一个周期所导致的畴壁运动的距离相同,与外加磁场强度无关.
    The magnetization reversal processes of cobalt nanowires under different constant external magnetic fields have been studied by using the finite element micromagnetism simulation approach. The results show that magnetic domains with opposite magnetizations will be formed at one end of nanowires with a diameter of 10 nm after a nucleation time. The domain wall is classified as a transverse wall,which can be driven to move with a constant velocity by a constant external applied field from one end to the other. The velocity of domain wall is linearly dependent on the magnitude of external applied magnetic field. When H is 1000 kA/m,it is found that two head-to-head domains are found at both ends of nanowires. The calculation results show that the domain wall moves a constant distance during a period in which the direction of any magnetic moment rotates a cycle,which is independent of the magnitude of applied magnetic field.
    • 基金项目: 国家自然科学基金 (批准号:60701016)及NSFC-RS国际合作项目(批准号:60911130130)资助的课题.
    [1]

    [1]Mao C Y,Zhu J G,White R M 2000 J. Appl. Phys. 87 5416

    [2]

    [2]Allwood D A,Xiong G,Cowburn R P 2006 Appl. Phys. Lett. 89 102504

    [3]

    [3]Allwood D A,Xiong G,Faulkner C C,Atkinson D,Petit D,Cowburn R P 2005 Science 309 1688

    [4]

    [4]Diegel M,Mattheis R,Halder E 2007 Sens. Lett. 5 118

    [5]

    [5]Diegel M,Mattheis R,Halder E 2004 IEEE Trans. Magn. 40 2655

    [6]

    [6]Allwood D A,Schrefl T,Hrkac G,Hughes I G,Adams C S 2006 Appl. Phys. Lett. 89 014102

    [7]

    [7]Martinez E,Lopez-Diaz L,Torres L,Tristan C,Alejos O 2007 Phys. Rev. B 75 174409

    [8]

    [8]Ono T,Miyajima H,Shigeto K,Mibu K,Hosoito N,Shinjo T 1999 Science 284 468

    [9]

    [9]Grollier J,Boulenc P,Cros V,Hamzic A,Vaurès A,Fert A,Faini G 2003 Appl. Phys. Lett. 83 509

    [10]

    ]Hayashi M,Thomas L,Rettner C,Moriya R,Bazaliy Y B,Parkin S S P 2007 Phys. Rev. Lett. 98 037204

    [11]

    ]Brownlie C,McVitie S,Chapman J N,Wilkinson C D W 2006 J. Appl. Phys. 100 033902

    [12]

    ]da Silva F C S,Uhlig W C,Kos A B,Schima S,Aumentado J,Unguris J,Pappas D P 2004 Appl. Phys. Lett. 85 6022

    [13]

    ]Chapman J N,Scheinfein M R 1999 J. Magn. Magn. Mater. 200 729

    [14]

    ]Zhu X,Allwood D A,Xiong G,Cowburn R P,Grütter P 2005 Appl. Phys. Lett. 87 062503

    [15]

    ]Bryan M T,Fry P W,Fischer P J,Allwood D A 2008 J. Appl. Phys. 103 07D909

    [16]

    ]Zhang H W,Rong C B,Zhan J,Zhang S Y,Shen B G 2003 Acta Phys. Sin. 52 718 (in Chinese)[张宏伟、荣传兵、张健、张绍英、沈保根 2003 物理学报 52 718]

    [17]

    ]Hertel R,Kirschner J 2004 Physica B 343 206

    [18]

    ]Porter D G,Donahue M J 2004 J. Appl. Phys. 95 6729

    [19]

    ]Ndjaka J M B,Thiaville A,Miltat J 2009 J. Appl. Phys. 105 023905

    [20]

    ]Aharoni A 1996 Introduction to Theory of Ferromagnetism (New York:Oxford University Press) p31

    [21]

    ]Fredkin D R,Koehler T R 1990 IEEE Trans. Magn. 26 415

    [22]

    ]OOMMF 软件:http://math.nist.gov/oommf/

    [23]

    ]Kuhn K 2006 Proc. Appl. Math. Mech. 6 493

    [24]

    ]Hinzke D,Nowak U 2000 J. Magn. Magn. Mater. 221 365

    [25]

    ]Malozemoff A P,Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York:Academic Press) p15

    [26]

    ]Hubert A,Schafer R 1998 Magnetic Domains (Berlin:Springer-Verlag)pg237

    [27]

    ]Atkinson D,Allwood D A,Xiong G,Cooke M D,Faulkner C C,Cowburn R P 2003 Nat. Mater. 2 8

    [28]

    ]Beach G S D,Nistor C,Knutson C,Tsoi M,Erskine J L 2005 Nat. Mater. 4 741

    [29]

    ]Hayashi M,Thomas L,Rettner C,Moriya R,Parkin S S P 2007 Nat. Phys. 3 21

  • [1]

    [1]Mao C Y,Zhu J G,White R M 2000 J. Appl. Phys. 87 5416

    [2]

    [2]Allwood D A,Xiong G,Cowburn R P 2006 Appl. Phys. Lett. 89 102504

    [3]

    [3]Allwood D A,Xiong G,Faulkner C C,Atkinson D,Petit D,Cowburn R P 2005 Science 309 1688

    [4]

    [4]Diegel M,Mattheis R,Halder E 2007 Sens. Lett. 5 118

    [5]

    [5]Diegel M,Mattheis R,Halder E 2004 IEEE Trans. Magn. 40 2655

    [6]

    [6]Allwood D A,Schrefl T,Hrkac G,Hughes I G,Adams C S 2006 Appl. Phys. Lett. 89 014102

    [7]

    [7]Martinez E,Lopez-Diaz L,Torres L,Tristan C,Alejos O 2007 Phys. Rev. B 75 174409

    [8]

    [8]Ono T,Miyajima H,Shigeto K,Mibu K,Hosoito N,Shinjo T 1999 Science 284 468

    [9]

    [9]Grollier J,Boulenc P,Cros V,Hamzic A,Vaurès A,Fert A,Faini G 2003 Appl. Phys. Lett. 83 509

    [10]

    ]Hayashi M,Thomas L,Rettner C,Moriya R,Bazaliy Y B,Parkin S S P 2007 Phys. Rev. Lett. 98 037204

    [11]

    ]Brownlie C,McVitie S,Chapman J N,Wilkinson C D W 2006 J. Appl. Phys. 100 033902

    [12]

    ]da Silva F C S,Uhlig W C,Kos A B,Schima S,Aumentado J,Unguris J,Pappas D P 2004 Appl. Phys. Lett. 85 6022

    [13]

    ]Chapman J N,Scheinfein M R 1999 J. Magn. Magn. Mater. 200 729

    [14]

    ]Zhu X,Allwood D A,Xiong G,Cowburn R P,Grütter P 2005 Appl. Phys. Lett. 87 062503

    [15]

    ]Bryan M T,Fry P W,Fischer P J,Allwood D A 2008 J. Appl. Phys. 103 07D909

    [16]

    ]Zhang H W,Rong C B,Zhan J,Zhang S Y,Shen B G 2003 Acta Phys. Sin. 52 718 (in Chinese)[张宏伟、荣传兵、张健、张绍英、沈保根 2003 物理学报 52 718]

    [17]

    ]Hertel R,Kirschner J 2004 Physica B 343 206

    [18]

    ]Porter D G,Donahue M J 2004 J. Appl. Phys. 95 6729

    [19]

    ]Ndjaka J M B,Thiaville A,Miltat J 2009 J. Appl. Phys. 105 023905

    [20]

    ]Aharoni A 1996 Introduction to Theory of Ferromagnetism (New York:Oxford University Press) p31

    [21]

    ]Fredkin D R,Koehler T R 1990 IEEE Trans. Magn. 26 415

    [22]

    ]OOMMF 软件:http://math.nist.gov/oommf/

    [23]

    ]Kuhn K 2006 Proc. Appl. Math. Mech. 6 493

    [24]

    ]Hinzke D,Nowak U 2000 J. Magn. Magn. Mater. 221 365

    [25]

    ]Malozemoff A P,Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York:Academic Press) p15

    [26]

    ]Hubert A,Schafer R 1998 Magnetic Domains (Berlin:Springer-Verlag)pg237

    [27]

    ]Atkinson D,Allwood D A,Xiong G,Cooke M D,Faulkner C C,Cowburn R P 2003 Nat. Mater. 2 8

    [28]

    ]Beach G S D,Nistor C,Knutson C,Tsoi M,Erskine J L 2005 Nat. Mater. 4 741

    [29]

    ]Hayashi M,Thomas L,Rettner C,Moriya R,Parkin S S P 2007 Nat. Phys. 3 21

  • [1] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控. 物理学报, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [2] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [3] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [4] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [5] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [6] 郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军马博, 吴玉娟. 晶格失配应力对单晶(BiTm)3(GaFe)5O12膜磁畴结构的影响. 物理学报, 2018, 67(11): 117801. doi: 10.7498/aps.67.20180192
    [7] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量. 物理学报, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [10] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [11] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [12] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [13] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [14] 刘晓旭, 王鸿雁, 刘宝海, 朱伟, 冯琳, 吴光恒, 赵建玲, 李养贤. 束状形貌Co89Cu11纳米线阵列的制备及其磁性研究. 物理学报, 2010, 59(3): 2085-2089. doi: 10.7498/aps.59.2085
    [15] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究. 物理学报, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [16] 胡云志, 孙会元. 脉冲偏场作用下石榴石磁泡薄膜中布洛赫线的形成. 物理学报, 2008, 57(8): 5256-5260. doi: 10.7498/aps.57.5256
    [17] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [18] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [19] 胡海宁, 陈京兰, 吴光恒. 电化学沉积Fe单晶纳米线生长中的取向控制. 物理学报, 2005, 54(1): 389-392. doi: 10.7498/aps.54.389
    [20] 姜文红, 罗四维, 中村庆久. 写磁头对记录介质中输出信号的影响. 物理学报, 2002, 51(1): 167-170. doi: 10.7498/aps.51.167
计量
  • 文章访问数:  7859
  • PDF下载量:  1508
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-13
  • 修回日期:  2009-07-10
  • 刊出日期:  2010-03-15

/

返回文章
返回