搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力对磁声发射和磁畴运动特性的影响

邱发生 曾宇帆 肖树坤 殷晓芳 郭朝阳

引用本文:
Citation:

应力对磁声发射和磁畴运动特性的影响

邱发生, 曾宇帆, 肖树坤, 殷晓芳, 郭朝阳

Influence of stress on magneto-acoustic emission and magnetic domain motion characteristics

QIU Fasheng, ZENG Yufan, XIAO Shukun, YIN Xiaofang, GUO Chaoyang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 宏微观磁响应广泛应用于磁性材料应力无损检测中, 其主要原理是磁畴在应力作用下其磁畴模式和磁畴动态行为会发生变化. 多场耦合作用下的磁畴演变规律是研发新型磁性无损检测技术的关键. 本文基于磁光克尔成像和磁声发射检测系统, 探究了应力对多晶材料微观磁畴和宏观磁声发射信号的影响规律. 从宏观上, 推导了磁声发射信号和应力之间的映射关系模型, 并通过实验验证了该模型的准确性. 从微观上, 研究了应力场和晶界对磁畴模式的影响规律, 建立了附加磁畴的占比和应力之间的映射关系. 最后, 从反磁化过程中附加磁畴形核和附加磁畴随应力的变化规律揭示了畴壁动力学特性和磁声发射信号之间的内在关联. 研究结果表明, 磁弹性效应导致了附加磁畴和90°磁畴的减少, 使得磁声发射信号减弱. 本文的力-磁声模型和应力对磁畴运动特性的变化规律揭示了基于磁声发射方法的铁磁材料应力检测机理, 同时也为发展力-磁-声耦合模型、磁无损检测技术提供了理论基础.
    Microscopic and macroscopic magnetic responses are widely used for non-destructive testing and evaluating stress. The basic principle is that the magnetic domain pattern and magnetic domain dynamics are highly dependent on applied tensile stress. Understanding the evolution of magnetic domains under the action of multi-field coupling is critical for developing novel magnetic non-destructive testing technology. In this work, the influences of stress on magnetic domain and magneto-acoustic emission signals in polycrystalline materials are investigated based on the magneto-optical Kerr imaging and magneto-acoustic emission detection system. On a macroscopic scale, the mapping relationship between the magneto-acoustic emission signal and stress is established. Microscopically, the influences of the stress and grain boundaries on the magnetic domain patterns are investigated. And a mapping relationship between percentage of supplementary domains and stress is built. Finally, the interrelation between the domain wall dynamics and the magneto-acoustic emission signal is revealed from the nucleation of supplementary domains and their stress-dependent evolution. The results indicate that the magnetoelastic effect reduces the density of supplementary domains and 90° domains, which weakens the magneto-acoustic emission signal. The stress-magneto-acoustic model and the influence of the stress on the magnetic domain in this work reveal the mechanism of magneto-acoustic emission technique for stress measurement. It also provides a theoretical foundation for developing stress-magnetic-acoustic models and magnetic non-destructive testing technology.
  • 图 1  磁光成像系统和磁声发射检测系统

    Fig. 1.  Magneto-optical imaging system and MAE measurement set-up.

    图 2  (a) 0和87 MPa磁声发射原始信号; (b)不同应力下磁声发射信号包络线

    Fig. 2.  (a) MAE original signals under 0 and 87 MPa; (b) the MAE envelope under different stress.

    图 3  磁声发射信号峰值及峰值倒数与应力的关系

    Fig. 3.  The relationship between Vpeak and 1/Vpeak with stress.

    图 4  晶粒1和晶粒2处不同应力及退磁状态下磁畴模式

    Fig. 4.  The magnetic domain patterns in demagnetized state under different stress in grain 1 and grain 2.

    图 5  晶粒1不同应力和不同磁场下的磁畴图像

    Fig. 5.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in grain 1.

    图 6  晶粒2处不同应力和不同磁场下的磁畴图像

    Fig. 6.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in grain 2.

    图 7  位置1处不同应力和不同磁场下的磁畴图像

    Fig. 7.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in location 1.

    图 8  位置2处不同应力和不同磁场下的磁畴图像

    Fig. 8.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in location 2.

    图 9  磁声发射信号峰值与附加磁畴占比的关系 (a) 附加磁畴随应力的变化规律; (b)附加磁畴和MAE信号之间的关系

    Fig. 9.  (a) The relationship between the percentage of supplementary domain and stress; (b) the relationship between the percentage of supplementary domain and the peak of MAE signal.

  • [1]

    张召泉, 时朋朋, 苟晓凡 2022 物理学报 71 097501Google Scholar

    Zhang Z Q, Shi P P, Gou X F 2022 Acta Phys. Sin. 71 097501Google Scholar

    [2]

    Huang S, Ragusa C S, Xu W J, Solimene L, Wang S H 2024 IEEE Trans. Instrum. Meas. 73 6008313

    [3]

    Wang Z J, Shi P P, Chen H, Liang T S, Deng K, Chen Z M 2023 J. Appl. Phys. 134 065103Google Scholar

    [4]

    Qian Z C, Miao X L, Wang J, Yang C L, Zhang W, Chen Z G, Li G R, Xu H M, Chen H B, Huang H H 2025 Nondestruct. Test. Eval. 40 1483Google Scholar

    [5]

    Liu Z H, Riaz W, Shen Y N, Wang X R, He C F, Shen G T 2024 NDT and E Int. 146 103171Google Scholar

    [6]

    Serbin E D, Kostin V N, Vasilenko O N, Ksenofontov D G, Gerasimov E G, Terentev P B 2020 NDT and E Int. 116 102330Google Scholar

    [7]

    Stupakov A, Perevertov O, Landa M 2017 J. Magn. Magn. Mater. 426 685Google Scholar

    [8]

    Raftrey D, Finizio S, Chopdekar R V, Dhuey S, Bayaraa T, Ashby P, Raabe J, Santo T, Griffin S, Fischer P 2024 Sci. Adv. 10 8615Google Scholar

    [9]

    Nie H Y, Li Z H, Wang X S, Wang Z Y 2024 Appl. Phys. Lett. 126 132402

    [10]

    Hariki A, Din D A, Amin O J, Yamaguchi T, Badura A, Kriegner D, Edmonds K W, Campion R P, Wadley P, Backes D, Veige L S I, Dhesi S S, Springholz G, Smejkal L, Vyborny K, Jungwirth T, Kunes J 2024 Phys. Rev. Lett. 132 176701Google Scholar

    [11]

    赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报 72 208502Google Scholar

    Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar

    [12]

    张志东 2015 物理学报 64 67503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 67503Google Scholar

    [13]

    McCord J 2015 J. Phys. D: Appl. Phys. 48 333001Google Scholar

    [14]

    Hubert A, Schäfer R 2008 Magnetic domains: the analysis of magnetic mi-crostructures (Vol. 1) (Heidelberg: Springer-Verlag) pp11—97

    [15]

    Honkanen M, Lukinmaa H, Kaappa S, Santa-aho S, Kajan J, Savolainen S, Azzari L, Laurson L, Palosaaro M, Vippola M 2024 Ultramicroscopy 262 113979Google Scholar

    [16]

    Martínez M D P, Wartelle A, Martínez C H, Fettar F, Blondelle F, Motte J, Donnelly C, Turnbull L, Ogrin F, Lann G, Popescu H, Jaouen N, Yakhou-Harris F, Beutier G 2023 Phys. Rev. B 107 04425

    [17]

    Winter K, Liao Z R, Abbá E, Linares J A R, Axinte D 2024 Nat. Commun. 15 9010Google Scholar

    [18]

    Perevertov O, Schäfer R 2012 J. Phys. D: Appl. Phys. 45 135001Google Scholar

    [19]

    Qiu F S, Matic J K, Tian G Y, Wu G H, McCord J 2021 J. Magn. Magn. Mater. 523 167588Google Scholar

    [20]

    Qiu F S, Matic J K, Tian G Y, Hu P, McCord J 2019 J. Phys. D: Appl. Phys. 52 265001Google Scholar

    [21]

    吴鑫, 张艳丽, 王振, 李梦星, 姜伟 2023 电工技术学报 38 2289

    Wu X, Zhang Y L, Wang Z, Li M X, Jiang W 2023 Trans. Chin. Electrotech. Soc. 38 2289

    [22]

    Zhang Z, Hamzehbahmani H, Gaskell P H. 2021 IEEE Trans. Magn. 58 1

    [23]

    Kawamura Y, Yamamoto S, Yamagata R, Nakamura S, Katsura S 2024 IEEE Trans. Magn. 60 2000506

    [24]

    李永建, 李宗明, 利雅婷, 岳帅超, 窦宇 2024 电工技术学报 39 6941

    Li Y J, Li Z M, Li Y T, Yue S C, Dou Y 2024 Trans. Chin. Electrotech. Soc. 39 6941

    [25]

    Legall F, Morice C, Jahjah W, Bivic A, Ryon N, Richy J, Prinsloo A R E, Sheppard C J, Fessant A, Jay J P, Spenato D, Dekadjevi D T 2021 Phys. Rev. Appl. 15 044028Google Scholar

    [26]

    Wu L B, Yao K, Zhao B X, Wang Y S 2019 Appl. Phys. Lett. 115 162406Google Scholar

    [27]

    刘焕宇, 许宇帆, 叶家乐, 唐梦婷, 刘乐平, 魏亮辉, 邱发生 2022 失效分析与预防 17 247Google Scholar

    Liu H Y, Xu Y F, Ye J L, Tang M T, Liu L P, Wei L H, Qiu F S 2022 Fail. Anal. Prev. 17 247Google Scholar

  • [1] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型. 物理学报, doi: 10.7498/aps.71.20212253
    [2] 叶晴莹, 王文静, 邓楚楚, 陈水源, 张鑫源, 王雅婧, 黄秋怡, 黄志高. 缺陷铁纳米环体系的磁特性研究. 物理学报, doi: 10.7498/aps.68.20182271
    [3] 郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军马博, 吴玉娟. 晶格失配应力对单晶(BiTm)3(GaFe)5O12膜磁畴结构的影响. 物理学报, doi: 10.7498/aps.67.20180192
    [4] 邓东阁, 左苏, 武新军. 基于表面磁感应强度的铁磁构件应力恒磁表征方法. 物理学报, doi: 10.7498/aps.67.20180560
    [5] 严柏平, 张成明, 李立毅, 吕福在, 邓双. Tb0.3Dy0.7Fe2合金磁畴偏转的滞回特性研究. 物理学报, doi: 10.7498/aps.65.067501
    [6] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, doi: 10.7498/aps.64.067503
    [7] 李少波, 殷春浩, 徐振坤, 李佩欣, 吴彩平, 冯铭扬. 基于电子顺磁共振的锶铁氧体磁特性研究. 物理学报, doi: 10.7498/aps.64.107502
    [8] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响. 物理学报, doi: 10.7498/aps.63.085101
    [9] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, doi: 10.7498/aps.62.044106
    [10] 朱金荣, 香妹, 胡经国. 铁磁/反铁磁双层膜系统中的磁畴动力学行为. 物理学报, doi: 10.7498/aps.61.187504
    [11] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, doi: 10.7498/aps.61.187503
    [12] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, doi: 10.7498/aps.59.2090
    [13] 李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬. 超薄Fe(4?)膜磁特性极化中子反射研究. 物理学报, doi: 10.7498/aps.58.7993
    [14] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, doi: 10.7498/aps.57.5249
    [15] 胡云志, 孙会元. 脉冲偏场作用下石榴石磁泡薄膜中布洛赫线的形成. 物理学报, doi: 10.7498/aps.57.5256
    [16] 高 湉, 曹世勋, 李文娟, 康保娟, 袁淑娟, 张金仓. Cu掺杂LaMn1-xCuxO3体系的磁转变和导电行为研究. 物理学报, doi: 10.7498/aps.55.3692
    [17] 康保娟, 曹世勋, 王新燕, 李领伟, 黎文峰, 刘 芬, 曹桂新, 郁黎明, 敬 超, 张金仓. 混合场中 (Pr1-yNdy)2/3Sr1/3MnO3体系磁转变行为研究. 物理学报, doi: 10.7498/aps.54.902
    [18] 姜文红, 罗四维, 中村庆久. 写磁头对记录介质中输出信号的影响. 物理学报, doi: 10.7498/aps.51.167
    [19] 聂向富, 唐贵德, 牛秀德, 韩宝善. 三类硬磁畴的形成及静态特性. 物理学报, doi: 10.7498/aps.39.296
    [20] 李靖元. 磁泡材料的磁滞迴线和泡阵磁畴的剩磁. 物理学报, doi: 10.7498/aps.31.758
计量
  • 文章访问数:  336
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-04-22
  • 上网日期:  2025-05-13

/

返回文章
返回