-
宏微观磁响应广泛应用于磁性材料应力无损检测中,其主要原理是磁畴在应力作用下其磁畴模式和磁畴动态行为会发生变化。多场耦合作用下的磁畴演变规律是研发新型磁性无损检测技术的关键。本文基于磁光克尔成像和磁声发射检测系统,探究了应力对多晶材料微观磁畴和宏观磁声发射信号的影响规律。从宏观上,推导了磁声发射信号和应力之间的映射关系模型,并通过实验验证了该模型的准确性。从微观上,研究了应力场和晶界对磁畴模式的影响规律,建立了附加磁畴的占比和应力之间的映射关系。最后,从反磁化过程中附加磁畴形核和附加磁畴随应力的变化规律揭示了畴壁动力学特性和磁声发射信号之间的内在关联。研究结果表明,磁弹性效应导致了附加磁畴和90
°磁畴的减少,使得磁声发射信号减弱。本文的力-磁声模型和应力对磁畴运动特性的变化规律揭示了基于磁声发射方法的铁磁材料应力检测机理,同时也为发展力-磁-声耦合模型、磁无损检测技术提供了理论基础。 Magnetic response from micro and macro scale is widely used for stress evaluation in Non-destructive testing and evaluation. The basic principle is that the magnetic domain pattern and magnetic domain dynamics is highly depend on the applied tensile stress. Understanding the evolution of magnetic domains under the action of multi-field coupling is critical for developing novel magnetic non-destructive testing technologies. In this work, the effect of stress on magnetic domain and magneto-acoustic emission signals in polycrystalline materials was investigated based on the magneto-optical Kerr imaging and magneto-acoustic emission detection system. From the macroscopic scale, the mapping relationship between the magneto-acoustic emission signal and stress is established. Microscopically, the influence of the stress and grain boundaries on the magnetic domain patterns were investigated. And the correlation between supplementary domains and stress are built. Finally, the interrelation between the domain wall dynamics and the magneto-acoustic emission signal is revealed from the nucleation of supplementary domains and their stress-dependent evolution.
The results indicated that the magnetoelastic effect reduces the density of supplementary domains and 90° domains, which weaken the magneto-acoustic emission signal. The stress-magneto-acoustic model and the influence of the stress on the magnetic domain in this work reveals mechanism of magneto-acoustic emissions technique for stress measurement. It also provides a theoretical foundation for advancing stress-magnetic-acoustic models and magnetic non-destructive testing technology. -
[1] Zhang Z Q, Shi P P, Gou X F 2022Acta Phys. Sin. 71 097501(in Chinese) [张召泉,时朋朋,苟晓凡2022物理学报71 097501]
[2] Huang S, Ragusa C S, Xu W J, Solimene L, Wang S H 2024IEEE Trans. Instrum. Meas. 73
[3] Wang Z J, Shi P P, Chen H, Liang T S, Deng K, Chen Z M 2023J. Appl. Phys. 134065103
[4] Qian Z C, Miao X L, Wang J, Yang C L, Zhang W, Chen Z G, Li G R, Xu H M, Chen H B, Huang H H 2025Nondestruct. Test. Eval. 40 1483
[5] Liu Z H, Riaz W, Shen Y N, Wang X R, He C F, Shen G T 2024NDT E Int. 146103171
[6] Serbin E D, Kostin V N, Vasilenko O N, Ksenofontov D G, Gerasimov E G, Terentev P B 2020NDT E Int. 116 102330
[7] Stupakov A, Perevertov O, Landa M 2017J. Magn. Magn. Mater. 426 685
[8] Raftrey D, Finizio S, Chopdekar R V, Dhuey S, Bayaraa T, Ashby P, Raabe J, Santo T, Griffin S, Fischer P 2024Sci. Adv. 108615
[9] Nie H Y, Li Z H, Wang X S, Wang Z Y 2024Appl. Phys. Lett. 126132402
[10] Hariki A, Din D A, Amin O J, Yamaguchi T, Badura A, Kriegner D, Edmonds K W, Campion R P, Wadley P, Backes D, Veige L S I, Dhesi S S, Springholz G, Smejkal L, Vyborny K, Jungwirth T, Kunes J 2024Phys. Rev. Lett. 132 176701
[11] Zhao C R, Wei Y X, Liu T T, Qin M H 2023Acta Phys. Sin. 72 77(in Chinese) [赵晨蕊,魏云昕,刘婷婷,秦明辉2023物理学报72 77]
[12] Zhang Z D 2015Acta Phys. Sin. 6467503(in Chinese) [张志东2015物理学报64 067503]
[13] McCord J 2015J. Phys. D: Appl. Phys. 48 333001
[14] Hubert A, Schäfer R 2008Magnetic domains: the analysis of magnetic mi-crostructures (Vol. 1) (Heidelberg: Springer-Verlag) PP11—97
[15] Honkanen M, Lukinmaa H, Kaappa S, Santa-aho S, Kajan J, Savolainen S, Azzari L, Laurson L, Palosaaro M, Vippola M 2024Ultramicroscopy 262 113979
[16] Martínez M D P, Wartelle A, Martínez C H, Fettar F, Blondelle F, Motte J, Donnelly C, Turnbull L, Ogrin F, Lann G, Popescu H, Jaouen N, Yakhou-Harris F, Beutier G 2023Phys. Rev. B 107 04425
[17] Winter K, Liao Z R, Abbá E, Linares J A R, Axinte D 2024Nat. Commun. 15 9010
[18] Perevertov O, Schäfer R 2012J. Phys. D: Appl. Phys. 45 135001
[19] Qiu F S, Matic J K, Tian G Y, Wu G H, McCord J 2021J. Magn. Magn. Mater. 523 167588
[20] Qiu F S, Matic J K, Tian G Y, Hu P, McCord J 2019J. Phys. D: Appl. Phys. 52 265001
[21] Wu X, Zhang Y L, Wang Z, Li M X, Jiang W 2023Transactions of China Electrotechnical Society 38 2289(in Chinese) [吴鑫,张艳丽,王振,李梦星,姜伟2023电工技术学报38 2289]
[22] Zhang Z, Hamzehbahmani H, Gaskell P H. 2021IEEE Trans. Magn. 58 1
[23] Kawamura Y, Yamamoto S, Yamagata R, Nakamura S, Katsura S 2024IEEE Trans. Magn. 60
[24] Li Y J, Li Z M, Li Y T, Yue S C, Dou Y 2024Transactions of China Electrotechnical Society 39 6941(in Chinese) [李永建,李宗明,利雅婷,岳帅超,窦宇2024电工技术学报39 6941]
[25] Legall F, Morice C, Jahjah W, Bivic A, Ryon N, Richy J, Prinsloo A R E, Sheppard C J, Fessant A, Jay J P, Spenato D, Dekadjevi D T 2021Phys. Rev. Applied 15 044028
[26] Wu L B, Yao K, Zhao B X, Wang Y S 2019Appl. Phys. Lett. 115 162406
[27] Liu H Y, Xu Y F, Ye J L, Tang M T, Liu L P, Wei L H, Qiu F S 2022Failure analysis and prevention 17 247(in Chinese) [刘焕宇,许宇帆,叶家乐,唐梦婷,刘乐平,魏亮辉,邱发生2022失效分析与预防17 247]
计量
- 文章访问数: 10
- PDF下载量: 0
- 被引次数: 0