-
宏微观磁响应广泛应用于磁性材料应力无损检测中, 其主要原理是磁畴在应力作用下其磁畴模式和磁畴动态行为会发生变化. 多场耦合作用下的磁畴演变规律是研发新型磁性无损检测技术的关键. 本文基于磁光克尔成像和磁声发射检测系统, 探究了应力对多晶材料微观磁畴和宏观磁声发射信号的影响规律. 从宏观上, 推导了磁声发射信号和应力之间的映射关系模型, 并通过实验验证了该模型的准确性. 从微观上, 研究了应力场和晶界对磁畴模式的影响规律, 建立了附加磁畴的占比和应力之间的映射关系. 最后, 从反磁化过程中附加磁畴形核和附加磁畴随应力的变化规律揭示了畴壁动力学特性和磁声发射信号之间的内在关联. 研究结果表明, 磁弹性效应导致了附加磁畴和90°磁畴的减少, 使得磁声发射信号减弱. 本文的力-磁声模型和应力对磁畴运动特性的变化规律揭示了基于磁声发射方法的铁磁材料应力检测机理, 同时也为发展力-磁-声耦合模型、磁无损检测技术提供了理论基础.Microscopic and macroscopic magnetic responses are widely used for non-destructive testing and evaluating stress. The basic principle is that the magnetic domain pattern and magnetic domain dynamics are highly dependent on applied tensile stress. Understanding the evolution of magnetic domains under the action of multi-field coupling is critical for developing novel magnetic non-destructive testing technology. In this work, the influences of stress on magnetic domain and magneto-acoustic emission signals in polycrystalline materials are investigated based on the magneto-optical Kerr imaging and magneto-acoustic emission detection system. On a macroscopic scale, the mapping relationship between the magneto-acoustic emission signal and stress is established. Microscopically, the influences of the stress and grain boundaries on the magnetic domain patterns are investigated. And a mapping relationship between percentage of supplementary domains and stress is built. Finally, the interrelation between the domain wall dynamics and the magneto-acoustic emission signal is revealed from the nucleation of supplementary domains and their stress-dependent evolution. The results indicate that the magnetoelastic effect reduces the density of supplementary domains and 90° domains, which weakens the magneto-acoustic emission signal. The stress-magneto-acoustic model and the influence of the stress on the magnetic domain in this work reveal the mechanism of magneto-acoustic emission technique for stress measurement. It also provides a theoretical foundation for developing stress-magnetic-acoustic models and magnetic non-destructive testing technology.
-
-
[1] 张召泉, 时朋朋, 苟晓凡 2022 物理学报 71 097501
Google Scholar
Zhang Z Q, Shi P P, Gou X F 2022 Acta Phys. Sin. 71 097501
Google Scholar
[2] Huang S, Ragusa C S, Xu W J, Solimene L, Wang S H 2024 IEEE Trans. Instrum. Meas. 73 6008313
[3] Wang Z J, Shi P P, Chen H, Liang T S, Deng K, Chen Z M 2023 J. Appl. Phys. 134 065103
Google Scholar
[4] Qian Z C, Miao X L, Wang J, Yang C L, Zhang W, Chen Z G, Li G R, Xu H M, Chen H B, Huang H H 2025 Nondestruct. Test. Eval. 40 1483
Google Scholar
[5] Liu Z H, Riaz W, Shen Y N, Wang X R, He C F, Shen G T 2024 NDT and E Int. 146 103171
Google Scholar
[6] Serbin E D, Kostin V N, Vasilenko O N, Ksenofontov D G, Gerasimov E G, Terentev P B 2020 NDT and E Int. 116 102330
Google Scholar
[7] Stupakov A, Perevertov O, Landa M 2017 J. Magn. Magn. Mater. 426 685
Google Scholar
[8] Raftrey D, Finizio S, Chopdekar R V, Dhuey S, Bayaraa T, Ashby P, Raabe J, Santo T, Griffin S, Fischer P 2024 Sci. Adv. 10 8615
Google Scholar
[9] Nie H Y, Li Z H, Wang X S, Wang Z Y 2024 Appl. Phys. Lett. 126 132402
[10] Hariki A, Din D A, Amin O J, Yamaguchi T, Badura A, Kriegner D, Edmonds K W, Campion R P, Wadley P, Backes D, Veige L S I, Dhesi S S, Springholz G, Smejkal L, Vyborny K, Jungwirth T, Kunes J 2024 Phys. Rev. Lett. 132 176701
Google Scholar
[11] 赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报 72 208502
Google Scholar
Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502
Google Scholar
[12] 张志东 2015 物理学报 64 67503
Google Scholar
Zhang Z D 2015 Acta Phys. Sin. 64 67503
Google Scholar
[13] McCord J 2015 J. Phys. D: Appl. Phys. 48 333001
Google Scholar
[14] Hubert A, Schäfer R 2008 Magnetic domains: the analysis of magnetic mi-crostructures (Vol. 1) (Heidelberg: Springer-Verlag) pp11—97
[15] Honkanen M, Lukinmaa H, Kaappa S, Santa-aho S, Kajan J, Savolainen S, Azzari L, Laurson L, Palosaaro M, Vippola M 2024 Ultramicroscopy 262 113979
Google Scholar
[16] Martínez M D P, Wartelle A, Martínez C H, Fettar F, Blondelle F, Motte J, Donnelly C, Turnbull L, Ogrin F, Lann G, Popescu H, Jaouen N, Yakhou-Harris F, Beutier G 2023 Phys. Rev. B 107 04425
[17] Winter K, Liao Z R, Abbá E, Linares J A R, Axinte D 2024 Nat. Commun. 15 9010
Google Scholar
[18] Perevertov O, Schäfer R 2012 J. Phys. D: Appl. Phys. 45 135001
Google Scholar
[19] Qiu F S, Matic J K, Tian G Y, Wu G H, McCord J 2021 J. Magn. Magn. Mater. 523 167588
Google Scholar
[20] Qiu F S, Matic J K, Tian G Y, Hu P, McCord J 2019 J. Phys. D: Appl. Phys. 52 265001
Google Scholar
[21] 吴鑫, 张艳丽, 王振, 李梦星, 姜伟 2023 电工技术学报 38 2289
Wu X, Zhang Y L, Wang Z, Li M X, Jiang W 2023 Trans. Chin. Electrotech. Soc. 38 2289
[22] Zhang Z, Hamzehbahmani H, Gaskell P H. 2021 IEEE Trans. Magn. 58 1
[23] Kawamura Y, Yamamoto S, Yamagata R, Nakamura S, Katsura S 2024 IEEE Trans. Magn. 60 2000506
[24] 李永建, 李宗明, 利雅婷, 岳帅超, 窦宇 2024 电工技术学报 39 6941
Li Y J, Li Z M, Li Y T, Yue S C, Dou Y 2024 Trans. Chin. Electrotech. Soc. 39 6941
[25] Legall F, Morice C, Jahjah W, Bivic A, Ryon N, Richy J, Prinsloo A R E, Sheppard C J, Fessant A, Jay J P, Spenato D, Dekadjevi D T 2021 Phys. Rev. Appl. 15 044028
Google Scholar
[26] Wu L B, Yao K, Zhao B X, Wang Y S 2019 Appl. Phys. Lett. 115 162406
Google Scholar
[27] 刘焕宇, 许宇帆, 叶家乐, 唐梦婷, 刘乐平, 魏亮辉, 邱发生 2022 失效分析与预防 17 247
Google Scholar
Liu H Y, Xu Y F, Ye J L, Tang M T, Liu L P, Wei L H, Qiu F S 2022 Fail. Anal. Prev. 17 247
Google Scholar
计量
- 文章访问数: 336
- PDF下载量: 5
- 被引次数: 0