搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷铁纳米环体系的磁特性研究

叶晴莹 王文静 邓楚楚 陈水源 张鑫源 王雅婧 黄秋怡 黄志高

引用本文:
Citation:

缺陷铁纳米环体系的磁特性研究

叶晴莹, 王文静, 邓楚楚, 陈水源, 张鑫源, 王雅婧, 黄秋怡, 黄志高

Magnetic dynamic properties of defective iron nanorings

Ye Qing-Ying, Wang Wen-Jing, Deng Chu-Chu, Chen Shui-Yuan, Zhang Xin-Yuan, Wang Ya-Jing, Huang Qiu-Yi, Huang Zhi-Gao
PDF
HTML
导出引用
  • 采用Monte Carlo方法与快速傅里叶变换微磁学方法相结合的方式, 模拟含不同缺陷的铁纳米环的磁滞回线、组态、剩磁等磁特性. 研究发现: 缺陷的大小与位置明显影响系统的磁化过程. 当缺陷较小时, 系统存在双稳态特征, 此性质与无缺陷系统类似; 当缺陷增大时, 系统过渡状态增加, 双稳态特征不再明显. 进一步的研究发现, 缺陷系统的剩磁随缺陷半径D的增大而增大. 上述结果与非对称纳米环系统的磁特性类似, 并可以通过零场状态下的系统自旋组态的变化加以解释. 当系统圆心与缺陷中心的间距Y增加时, 剩磁与Y的关系是非线性的: 剩磁先随Y的增大而增大, 后随Y的增大而减小. 模拟结果可用零场状态下不同Y值的组态变化进行详细解释. 上述研究结果表明, 缺陷可以明显影响铁纳米环的磁特性.
    Magnetic nanorings can be high-density integrated because their stray field is low in vortex states. In this paper, the magnetic dynamic properties of the defective Fe nanorings are studied. For convenience, we assume the defect to be round in shape, whose coordinate is (0, Y). Based on the Monte Carlo method and fast Fourier transformation micromagnetism method, the magnetic properties of the defective Fe nanorings, such as hysteresis loops, spin configurations, remanence, etc., are studied. The simulation results indicate that the magnetization process of the system can be affected by the sizes and locations of the defects. When the defects are small, the system has a bistable state, which is similar to the system without defects. The transition state of the system increases as the defects are enlarged, and the bistable state will be no longer so visible. The system becomes open when the defects are big enough. Meanwhile, its hysteresis loop presents a rectangular shape which is similar to cluster’s or quantum dot’s. The remanence increases with the radius of defect increasing. These results are in accord with the magnetic properties of asymmetric magnetic nanoring. In order to explain the above results, the spin configurations of the system are shown. The spins of defective nanorings are divided into two parts, i.e., upper half part and lower half part, which are represented as blue and black spins respectively. When the system does not have any defects, the number of blue spins is equal to black spins’. Therefore the remanence is zero when the system is in a vortex state. It is found that the number of blue spins decreases as the radius of defect increases. This situation results in the total magnetic moment increasing, which leads the remanence to increase. However, the relationship between remanence and Y (the distance between center of nanoring and center of defect) is nonlinear. The remanence first increases and then decreases with Y increasing. The simulation results can be explained by changing the spin configuration. By analyzing the spins of the upper and lower part, the magnetic moment of the system is analyzed. It is found that the number of the spins and the local vortexes can affect the remanence significantly. The results show that the magnetic properties of Fe nanorings can be affected by the defect.
      通信作者: 叶晴莹, qyye@fjnu.edu.cn ; 黄志高, zghuang@fjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61574037)和福建省自然科学基金(批准号: 2017J01553, 2016J01007)资助的课题.
      Corresponding author: Ye Qing-Ying, qyye@fjnu.edu.cn ; Huang Zhi-Gao, zghuang@fjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574037) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2017J01553, 2016J01007).
    [1]

    Wang Y G, Zhou K J, Huang G, Hensley C, Huang X N, Ma X P, Zhao T, Baran D S, Ralph J D, Gao J M 2014 Nat. Mater. 13 204Google Scholar

    [2]

    Li H, Cao Z M, Lin J Y, Zhao H, Jiang Q R, Jiang Z Y, Liao H G, Qin K, Xie Z X 2018 Nanoscale 10 1930Google Scholar

    [3]

    Kim D, Lee D R, Choi Y, Metlushko V 2012 Appl. Phys. Lett. 101 192404Google Scholar

    [4]

    王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2015 物理学报 64 247803Google Scholar

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803Google Scholar

    [5]

    Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F 2018 J. Biotechnol. 270 1Google Scholar

    [6]

    李建昌, 邵思佳 2017 物理学报 66 017101Google Scholar

    Li J C, Shao S J 2017 Acta Phys. Sin. 66 017101Google Scholar

    [7]

    何学敏, 钟伟, 都有为 2018 物理学报 67 227501Google Scholar

    He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501Google Scholar

    [8]

    林枝钦 2009 硕士学位论文(福州: 福建师范大学)

    Lin Z Q 2009 M. S. Thesis (Fzhou: Fujian Normal University) (in Chinese)

    [9]

    Yoon S, Lee S H, Kwak, Nam C, Kim W B, Cho B K 2014 J. Appl. Phys. 115 17B511Google Scholar

    [10]

    Liang Y Z, Li L M, Lu M D, Yuan H Z 2018 Nanoscale 10 548Google Scholar

    [11]

    Parkinson P, Kamonsutthipaijit N, Anderson H L, Herz L M 2016 ACS Nano 10 5933Google Scholar

    [12]

    Yannouleas C, Romanovsky I, Landman U 2015 J. Phys. Chem. C 119 11131Google Scholar

    [13]

    张中月, 孙中华, 王红艳, 张志东 2011 物理学报 60 047808Google Scholar

    Zhang Z Y, Sun Z H, Wang Y H, Zhang Z D 2011 Acta Phys. Sin. 60 047808Google Scholar

    [14]

    王同标, 刘念华, 于天宝, 徐旭明, 廖清华 2014 物理学报 63 017301Google Scholar

    Wang T B, Liu N H, Yu T B, Xu X M, Liao Q H 2014 Acta Phys. Sin. 63 017301Google Scholar

    [15]

    吕江涛, 王凤文, 马振鹤, 司光远 2013 物理学报 62 057804Google Scholar

    Lü J T, Wang F W, Ma Z H, Si G Y 2013 Acta Phys. Sin. 62 057804Google Scholar

    [16]

    Chen X, Qin J, Han X F, Liu Y 2018 Appl. Phys. Lett. 113 142406Google Scholar

    [17]

    Liu H, Wei H, Han X F, Yu G, Zhan W, Gall S, Lu Y, Hehn M, Mangin S, Sun M, Liu Y H, Cheng H 2018 Phys. Rev. Appl. 10 054013Google Scholar

    [18]

    Singh N, Goolaup S, Tan W, Adeyeye A O, Balasubramaniam N 2007 Phys. Rev. B 75 104407Google Scholar

    [19]

    Palma J L, Morales-Concha C, Leighton B, Escrig D J, Altbir J 2012 J. Magn. Magn. Mater. 324 637Google Scholar

    [20]

    Avila J I, Tumelero M A, Pasa A A, Viegas A D C 2015 J. Appl. Phys. 117 103901Google Scholar

    [21]

    Zhu F Q, Chern G W, Tchernyshyov O, Zhu X C, Zhu J G, Chien C L 2006 Phys. Rev. Lett. 96 027205Google Scholar

    [22]

    钟克华, 冯倩, 翁臻臻, 黄志高 2005 计算物理 22 534Google Scholar

    Zhong K H, Feng Q, Weng Z Z, Huang Z G 2005 Chin. J. Comput. Phys. 22 534Google Scholar

    [23]

    Huang Z G, Chen Z G, Peng K, Wang D H, Zhang W Y, Zhang F M, Du Y W 2004 Phys. Rev. B 69 094420Google Scholar

    [24]

    Huang Z, Chen Z, Zhang F, Du Y 2004 Eur. Phys. J. B 37 177

    [25]

    Huang Z, Chen Z, Li S, Feng Q, Zhang F, Du Y 2006 Eur. Phys. J. B 51 65Google Scholar

    [26]

    Ye Q, Feng Q, Chen S, Zhang J, Huang Z 2009 J. Nanosci. Nanotechnol. 9 1635Google Scholar

  • 图 1  缺陷铁纳米环模型

    Fig. 1.  Sketch map of defective Fe nanoring.

    图 2  不同D值的纳米环磁滞回线(Y = 30 nm, R = 100 nm, r = 40 nm)

    Fig. 2.  Hysteresis loops of defective Fe nanorings with different D (Y = 30 nm, R = 100 nm, r = 40 nm).

    图 3  不同Y值条件下系统剩磁随D值的变化(R = 100 nm, r = 40 nm)

    Fig. 3.  The relation between the remanence and D with different Y (R = 100 nm, r = 40 nm).

    图 4  不同D值的铁纳米环零场下的自旋组态图(Y = 30 nm, R = 100 nm, r = 40 nm)

    Fig. 4.  The spin configurations of Fe nanorings for different D with zero field (Y = 30 nm, R = 100 nm, r = 40 nm)

    图 5  剩磁随缺陷Y值变化曲线(D = 30 nm, R = 100 nm, r = 40 nm)

    Fig. 5.  The relation between the remanence and Y (D = 30 nm, R = 100 nm, r = 40 nm).

    图 6  不同Y值的铁纳米环的自旋组态图(D = 30 nm, R = 100 nm, r = 40 nm)

    Fig. 6.  The spin configurations of Fe nanorings for different Y (D = 30 nm, R = 100 nm, r = 40 nm).

  • [1]

    Wang Y G, Zhou K J, Huang G, Hensley C, Huang X N, Ma X P, Zhao T, Baran D S, Ralph J D, Gao J M 2014 Nat. Mater. 13 204Google Scholar

    [2]

    Li H, Cao Z M, Lin J Y, Zhao H, Jiang Q R, Jiang Z Y, Liao H G, Qin K, Xie Z X 2018 Nanoscale 10 1930Google Scholar

    [3]

    Kim D, Lee D R, Choi Y, Metlushko V 2012 Appl. Phys. Lett. 101 192404Google Scholar

    [4]

    王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2015 物理学报 64 247803Google Scholar

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803Google Scholar

    [5]

    Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F 2018 J. Biotechnol. 270 1Google Scholar

    [6]

    李建昌, 邵思佳 2017 物理学报 66 017101Google Scholar

    Li J C, Shao S J 2017 Acta Phys. Sin. 66 017101Google Scholar

    [7]

    何学敏, 钟伟, 都有为 2018 物理学报 67 227501Google Scholar

    He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501Google Scholar

    [8]

    林枝钦 2009 硕士学位论文(福州: 福建师范大学)

    Lin Z Q 2009 M. S. Thesis (Fzhou: Fujian Normal University) (in Chinese)

    [9]

    Yoon S, Lee S H, Kwak, Nam C, Kim W B, Cho B K 2014 J. Appl. Phys. 115 17B511Google Scholar

    [10]

    Liang Y Z, Li L M, Lu M D, Yuan H Z 2018 Nanoscale 10 548Google Scholar

    [11]

    Parkinson P, Kamonsutthipaijit N, Anderson H L, Herz L M 2016 ACS Nano 10 5933Google Scholar

    [12]

    Yannouleas C, Romanovsky I, Landman U 2015 J. Phys. Chem. C 119 11131Google Scholar

    [13]

    张中月, 孙中华, 王红艳, 张志东 2011 物理学报 60 047808Google Scholar

    Zhang Z Y, Sun Z H, Wang Y H, Zhang Z D 2011 Acta Phys. Sin. 60 047808Google Scholar

    [14]

    王同标, 刘念华, 于天宝, 徐旭明, 廖清华 2014 物理学报 63 017301Google Scholar

    Wang T B, Liu N H, Yu T B, Xu X M, Liao Q H 2014 Acta Phys. Sin. 63 017301Google Scholar

    [15]

    吕江涛, 王凤文, 马振鹤, 司光远 2013 物理学报 62 057804Google Scholar

    Lü J T, Wang F W, Ma Z H, Si G Y 2013 Acta Phys. Sin. 62 057804Google Scholar

    [16]

    Chen X, Qin J, Han X F, Liu Y 2018 Appl. Phys. Lett. 113 142406Google Scholar

    [17]

    Liu H, Wei H, Han X F, Yu G, Zhan W, Gall S, Lu Y, Hehn M, Mangin S, Sun M, Liu Y H, Cheng H 2018 Phys. Rev. Appl. 10 054013Google Scholar

    [18]

    Singh N, Goolaup S, Tan W, Adeyeye A O, Balasubramaniam N 2007 Phys. Rev. B 75 104407Google Scholar

    [19]

    Palma J L, Morales-Concha C, Leighton B, Escrig D J, Altbir J 2012 J. Magn. Magn. Mater. 324 637Google Scholar

    [20]

    Avila J I, Tumelero M A, Pasa A A, Viegas A D C 2015 J. Appl. Phys. 117 103901Google Scholar

    [21]

    Zhu F Q, Chern G W, Tchernyshyov O, Zhu X C, Zhu J G, Chien C L 2006 Phys. Rev. Lett. 96 027205Google Scholar

    [22]

    钟克华, 冯倩, 翁臻臻, 黄志高 2005 计算物理 22 534Google Scholar

    Zhong K H, Feng Q, Weng Z Z, Huang Z G 2005 Chin. J. Comput. Phys. 22 534Google Scholar

    [23]

    Huang Z G, Chen Z G, Peng K, Wang D H, Zhang W Y, Zhang F M, Du Y W 2004 Phys. Rev. B 69 094420Google Scholar

    [24]

    Huang Z, Chen Z, Zhang F, Du Y 2004 Eur. Phys. J. B 37 177

    [25]

    Huang Z, Chen Z, Li S, Feng Q, Zhang F, Du Y 2006 Eur. Phys. J. B 51 65Google Scholar

    [26]

    Ye Q, Feng Q, Chen S, Zhang J, Huang Z 2009 J. Nanosci. Nanotechnol. 9 1635Google Scholar

  • [1] 胡志良, 周斌, 曾智蓉, 梁天骄. 粒子(E45 MeV)核内级联Monte Carlo模拟程序研究. 物理学报, 2016, 65(23): 232501. doi: 10.7498/aps.65.232501
    [2] 李少波, 殷春浩, 徐振坤, 李佩欣, 吴彩平, 冯铭扬. 基于电子顺磁共振的锶铁氧体磁特性研究. 物理学报, 2015, 64(10): 107502. doi: 10.7498/aps.64.107502
    [3] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响. 物理学报, 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [4] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [5] 余波, 应阳君, 许海波. 惯性约束聚变的中子半影成像诊断系统的优化研究. 物理学报, 2010, 59(6): 4100-4109. doi: 10.7498/aps.59.4100
    [6] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [7] 李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬. 超薄Fe(4?)膜磁特性极化中子反射研究. 物理学报, 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [8] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [9] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [10] 高 湉, 曹世勋, 李文娟, 康保娟, 袁淑娟, 张金仓. Cu掺杂LaMn1-xCuxO3体系的磁转变和导电行为研究. 物理学报, 2006, 55(7): 3692-3697. doi: 10.7498/aps.55.3692
    [11] 关治强, 薛岩频, 林 海, 何贵丽, 吴晨旭. 钠离子浓度对核小体纤维结构影响的Monte Carlo模拟. 物理学报, 2006, 55(1): 460-464. doi: 10.7498/aps.55.460
    [12] 康保娟, 曹世勋, 王新燕, 李领伟, 黎文峰, 刘 芬, 曹桂新, 郁黎明, 敬 超, 张金仓. 混合场中 (Pr1-yNdy)2/3Sr1/3MnO3体系磁转变行为研究. 物理学报, 2005, 54(2): 902-906. doi: 10.7498/aps.54.902
    [13] 郑 宏, 王绍青, 成会明. 微孔对单壁纳米碳管储氢性能的影响. 物理学报, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
    [14] 邵元智, 钟伟荣, 林光明. 三维X-Y模型的滞后标度和动态相变行为. 物理学报, 2003, 52(9): 2309-2313. doi: 10.7498/aps.52.2309
    [15] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
    [16] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [17] 杨 宁, 陈光华, 张 阳, 公维宾, 朱鹤孙. 薄膜生长的理论模型与Monte Carlo模拟. 物理学报, 2000, 49(11): 2225-2229. doi: 10.7498/aps.49.2225
    [18] 张国民, 杨传章. 铁磁键稀疏Blume-Capel模型相图的Monte Carlo研究. 物理学报, 1993, 42(1): 128-133. doi: 10.7498/aps.42.128
    [19] 应和平, 季达人. 一种有效的量子Monte Carlo模拟方法及其关于二维反铁磁Heisenberg模型的研究. 物理学报, 1993, 42(11): 1845-1850. doi: 10.7498/aps.42.1845
    [20] 何延才, 曹立群. Monte Carlo方法计算微颗粒的X射线强度. 物理学报, 1984, 33(2): 241-249. doi: 10.7498/aps.33.241
计量
  • 文章访问数:  6871
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-26
  • 修回日期:  2019-03-25
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回