搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电子顺磁共振的锶铁氧体磁特性研究

李少波 殷春浩 徐振坤 李佩欣 吴彩平 冯铭扬

引用本文:
Citation:

基于电子顺磁共振的锶铁氧体磁特性研究

李少波, 殷春浩, 徐振坤, 李佩欣, 吴彩平, 冯铭扬

Study on magnetic properties of strontium ferrite based on the technology of electron paramagnetic resonance

Li Shao-Bo, Yin Chun-Hao, Xu Zhen-Kun, Li Pei-Xin, Wu Cai-Ping, Feng Ming-Yang
PDF
导出引用
  • 为了研究配料、温度、氧环境和掺杂等条件对锶铁氧体的磁性能的影响问题, 利用溶胶-凝胶法制备了锶铁氧体粉末, 建立了一种基于电子顺磁共振技术研究锶铁氧体粉末的磁特性的方法. 用电子顺磁共振波谱仪对烧结后的产物进行测试发现: 400 ℃预烧下, 锶铁摩尔比为1:9时, 中间产物顺磁相-Fe2O3含量最多, 高于400 ℃时其含量减少, 亚铁磁相增加, 并确定最佳煅烧温度介于800-900 ℃. 这是由于外磁场和其他磁场综合作用产生亚铁磁相, 进而产生较强的磁矩相互作用所致. 结合工业实际应用, 发现缺氧退火环境下, 顺磁相-Fe2O3含量较大, 不利于亚铁磁相生成; X-射线衍射(XRD)表征结果表明: 除了少量杂相, 其余均为顺磁相和亚铁磁相; 电子顺磁共振谱和XRD 谱检测结果综合表明, 锶铁摩尔比为1:9时, 最终产物的顺磁相含量最少, 亚铁磁相含量最多, 磁性最强; 毫特斯拉计的剩磁检测结果也证实了上述结果. 掺杂实验发现镧离子占锶镧总摩尔数的20% 至30% 时, 能够有效降低顺磁相的产生, 增强最终产物的亚铁磁性.
    In order to study how the ingredient, sintering temperature, oxygen, doping and other conditions affect magnetic properties of strontium ferrite powder, a strontium ferrite powder is prepared by sol-gel method, and a new method of studying magnetic properties of strontium ferrite powder based on an electron paramagnetic resonance (EPR) is established in this paper. The sintered samples are tested by electron paramagnetic resonance spectrometer. Results show that -Fe2O3, a paramagnetic intermediate, is most compared with other ratios under calcined at 400 ℃ and the strontium iron mole ratio of 1:9; while at the other temperatures it decreases and the ferromagnetic phase increases; the optimum calcination temperature is between 800 ℃ and 900 ℃. These facts are caused by both external magnetic field and other magnetic fields, thus resulting in some new stronger magnetic moment interactions. Results also show that a large quantity of paramagnetic -Fe2O3 is found under hypoxic annealing environment, which is not conducible to generating the ferrimagnetic phase; X-ray diffraction (XRD) analysis shows that the others are paramagnetic and ferrimagnetic phase except a bit of other phases; both EPR spectra and XRD spectra show that the paramagnetic phase is least, and ferrimagnetic phase is most in the sintering sample when strontium iron mole ratio is 1:9, so the sample owns the strongest magnetism. The sample remanence experiment by milli-tesla meter also confirms these results. It is also found that paramagnetic phase can effectively decrease and ferrimagnetism is enhanced when samples are doped by lanthanum ion accounting for 20%-30% of the total number of moles of strontium lanthanum.
    • 基金项目: 中央高校基本科研业务费专项基金(批准号: 2013xk04)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2013xk04).
    [1]

    Li Y Y, Li G D 1978 Ferrite Physics (1st Ed.) (Beijing: Science Press) pp34-36 (in Chinese) [李荫远, 李国栋 1978 铁氧体物理学(第一版) (北京: 科学出版社) 第34-36页]

    [2]

    Feng J 2002 Acta Phys. Sin. 51 1841 (in Chinese) [冯洁 2002 物理学报 51 1841]

    [3]

    Kuang X D, Qiu S X, Yuan X Z 2013 Baosteel Meishan 34 27 (in Chinese) [匡雪冬, 邱士星, 袁小镇2013 梅山科技34 27]

    [4]

    Sun Y J, Jin M L, Wang Z Y, Jiang H H 2013 J. Synth. Cryst. 42 751 (in Chinese) [孙延杰, 金鸣林, 王占勇, 蒋涵涵2013 人工晶体学报42 751]

    [5]

    Hui Y J 2012 M. S. Dissertation (Wuhan: Huazhong University of Science Technology) (in Chinese) [惠亚娟2012 硕士学位论文(武汉: 华中科技大学)]

    [6]

    Liu X S, Zhu D R, Menndez J L, Ruan Z, Jiang K L, Hu F 2012 2012 Chinese Function of New Materials Forum and the Third National Academic Conference of Electromagnetic Materials and Devices Tunxi, China, October 1824, 2012 p97 (in Chinese) [刘先松, 朱德如, Jose Luis Menndez, 阮征, 蒋坤良, 胡峰2012 2012 中国功能新材料学术论坛暨第三届全国电磁材料及器件学术会议, 中国安徽屯溪, 2012 年10 月18 日24 日, 第97 页]

    [7]

    Liu X S, Jia D N, Hu F, Zhu D R, Menndez J L 2012 Rare Metal Mater. Eng. (Sppl. 2) 41 63 (in Chinese) [刘先松, 贾道宁, 胡锋, 朱德如, Jose Luis Menndez 2012 稀有金属材料与工程41 63]

    [8]

    Zhang Z Y, Liu X X, Wu Y P, Wang X J 2012 Surf. Technol. 41 109 (in Chinese) [张泽洋, 刘祥萱, 吴有朋, 王煊军2012 表面技术41 109]

    [9]

    He X Y, Li Q L, Liu X X 2014 J. Mater. Prot. 47 54 (in Chinese) [何晓勇, 李巧玲, 刘晓霞2014 材料保护47 54]

    [10]

    Yang K, Liu Y L, Li Y X, Pan X Q, Qi W C, Zhang H W 2012 J. Magn. Mater. Devices 44 12 (in Chinese) [杨锴, 刘颖力, 李元勋, 潘忻强, 漆伟成, 张怀武2012 磁性材料及器件44 12]

    [11]

    Wei C Y, Shen X Q, Song F Z 2012 Chin. Phys. B 21 541

    [12]

    Zan F L, Ma Y Q, Zhang X, Ma Q, Zheng G H, Dai Z X 2014 J. Anhui Univ. (Nat. Sci. Ed.) 38 45 (in Chinese)[昝芬莲, 马永青, 张贤, 马倩, 郑赣鸿, 戴振翔2014 安徽大学学报(自然科学版) 38 45]

    [13]

    Garca-Cerda L A, Rodrguez-Fernndez O S, Resndiz-Hernndez P J 2004 J. Alloys. Compd. 369 182

    [14]

    Huang Y, Du C F, Qin X L, He W D 2007 Chin. J.Mater. Res. 21 324 (in Chinese) [黄英, 杜朝锋, 秦秀兰,何文栋2007 材料研究学报21 324]

    [15]

    Huang K, L J G 2009 J. Anqing Teach. Coll. (Nat. Sci.Ed.) 15 67 (in Chinese) [黄凯, 吕建国2009 安庆师范学院学报(自然科学版) 15 67]

    [16]

    Xu J, Dong J F, Xiang W D, Bao Q J 2008 Rare Metal Mater. Eng. 37 463 (in Chinese) [徐键, 董建峰, 向卫东,鲍前君2008 稀有金属材料与工程37 463]

    [17]

    Zhu D R, Liu X S, Hu F, Menndez J L 2012 Chin. J. Mater. Res. 26 91 (in Chinese) [朱德如, 刘先松, 胡锋,Jose Luis Mendez 2012 材料研究学报26 91]

    [18]

    Zhang L D, Mou J M 2001 Nano Materials and Structures(1st Ed.) (Beijing: Science Press) pp1012 (in Chinese)[张立德, 牟季美2001 纳米材料和纳米结构(第一版)(北京: 科学出版社) 第1012 页]

  • [1]

    Li Y Y, Li G D 1978 Ferrite Physics (1st Ed.) (Beijing: Science Press) pp34-36 (in Chinese) [李荫远, 李国栋 1978 铁氧体物理学(第一版) (北京: 科学出版社) 第34-36页]

    [2]

    Feng J 2002 Acta Phys. Sin. 51 1841 (in Chinese) [冯洁 2002 物理学报 51 1841]

    [3]

    Kuang X D, Qiu S X, Yuan X Z 2013 Baosteel Meishan 34 27 (in Chinese) [匡雪冬, 邱士星, 袁小镇2013 梅山科技34 27]

    [4]

    Sun Y J, Jin M L, Wang Z Y, Jiang H H 2013 J. Synth. Cryst. 42 751 (in Chinese) [孙延杰, 金鸣林, 王占勇, 蒋涵涵2013 人工晶体学报42 751]

    [5]

    Hui Y J 2012 M. S. Dissertation (Wuhan: Huazhong University of Science Technology) (in Chinese) [惠亚娟2012 硕士学位论文(武汉: 华中科技大学)]

    [6]

    Liu X S, Zhu D R, Menndez J L, Ruan Z, Jiang K L, Hu F 2012 2012 Chinese Function of New Materials Forum and the Third National Academic Conference of Electromagnetic Materials and Devices Tunxi, China, October 1824, 2012 p97 (in Chinese) [刘先松, 朱德如, Jose Luis Menndez, 阮征, 蒋坤良, 胡峰2012 2012 中国功能新材料学术论坛暨第三届全国电磁材料及器件学术会议, 中国安徽屯溪, 2012 年10 月18 日24 日, 第97 页]

    [7]

    Liu X S, Jia D N, Hu F, Zhu D R, Menndez J L 2012 Rare Metal Mater. Eng. (Sppl. 2) 41 63 (in Chinese) [刘先松, 贾道宁, 胡锋, 朱德如, Jose Luis Menndez 2012 稀有金属材料与工程41 63]

    [8]

    Zhang Z Y, Liu X X, Wu Y P, Wang X J 2012 Surf. Technol. 41 109 (in Chinese) [张泽洋, 刘祥萱, 吴有朋, 王煊军2012 表面技术41 109]

    [9]

    He X Y, Li Q L, Liu X X 2014 J. Mater. Prot. 47 54 (in Chinese) [何晓勇, 李巧玲, 刘晓霞2014 材料保护47 54]

    [10]

    Yang K, Liu Y L, Li Y X, Pan X Q, Qi W C, Zhang H W 2012 J. Magn. Mater. Devices 44 12 (in Chinese) [杨锴, 刘颖力, 李元勋, 潘忻强, 漆伟成, 张怀武2012 磁性材料及器件44 12]

    [11]

    Wei C Y, Shen X Q, Song F Z 2012 Chin. Phys. B 21 541

    [12]

    Zan F L, Ma Y Q, Zhang X, Ma Q, Zheng G H, Dai Z X 2014 J. Anhui Univ. (Nat. Sci. Ed.) 38 45 (in Chinese)[昝芬莲, 马永青, 张贤, 马倩, 郑赣鸿, 戴振翔2014 安徽大学学报(自然科学版) 38 45]

    [13]

    Garca-Cerda L A, Rodrguez-Fernndez O S, Resndiz-Hernndez P J 2004 J. Alloys. Compd. 369 182

    [14]

    Huang Y, Du C F, Qin X L, He W D 2007 Chin. J.Mater. Res. 21 324 (in Chinese) [黄英, 杜朝锋, 秦秀兰,何文栋2007 材料研究学报21 324]

    [15]

    Huang K, L J G 2009 J. Anqing Teach. Coll. (Nat. Sci.Ed.) 15 67 (in Chinese) [黄凯, 吕建国2009 安庆师范学院学报(自然科学版) 15 67]

    [16]

    Xu J, Dong J F, Xiang W D, Bao Q J 2008 Rare Metal Mater. Eng. 37 463 (in Chinese) [徐键, 董建峰, 向卫东,鲍前君2008 稀有金属材料与工程37 463]

    [17]

    Zhu D R, Liu X S, Hu F, Menndez J L 2012 Chin. J. Mater. Res. 26 91 (in Chinese) [朱德如, 刘先松, 胡锋,Jose Luis Mendez 2012 材料研究学报26 91]

    [18]

    Zhang L D, Mou J M 2001 Nano Materials and Structures(1st Ed.) (Beijing: Science Press) pp1012 (in Chinese)[张立德, 牟季美2001 纳米材料和纳米结构(第一版)(北京: 科学出版社) 第1012 页]

  • [1] 叶晴莹, 王文静, 邓楚楚, 陈水源, 张鑫源, 王雅婧, 黄秋怡, 黄志高. 缺陷铁纳米环体系的磁特性研究. 物理学报, 2019, 68(10): 107502. doi: 10.7498/aps.68.20182271
    [2] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [3] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响. 物理学报, 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [4] 殷春浩, 李佩欣, 侯磊田, 徐振坤, 吴彩平, 李少波. 基于电子顺磁共振的ZnTPP激发态及其TEMPO各向异性的研究. 物理学报, 2014, 63(9): 097201. doi: 10.7498/aps.63.097201
    [5] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [6] 李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬. 超薄Fe(4?)膜磁特性极化中子反射研究. 物理学报, 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [7] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [8] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏. 掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子. 物理学报, 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [9] 高 湉, 曹世勋, 李文娟, 康保娟, 袁淑娟, 张金仓. Cu掺杂LaMn1-xCuxO3体系的磁转变和导电行为研究. 物理学报, 2006, 55(7): 3692-3697. doi: 10.7498/aps.55.3692
    [10] 谢林华, 丘 岷. MgF2:Mn2+光谱、超精细常数和局部结构的关联. 物理学报, 2005, 54(12): 5845-5848. doi: 10.7498/aps.54.5845
    [11] 康保娟, 曹世勋, 王新燕, 李领伟, 黎文峰, 刘 芬, 曹桂新, 郁黎明, 敬 超, 张金仓. 混合场中 (Pr1-yNdy)2/3Sr1/3MnO3体系磁转变行为研究. 物理学报, 2005, 54(2): 902-906. doi: 10.7498/aps.54.902
    [12] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [13] 李剑锋, 姚连增, 蔡维理, 牟季美. 氮化硼包覆纳米氧化锌体系的光致发光特性研究. 物理学报, 2001, 50(8): 1623-1626. doi: 10.7498/aps.50.1623
    [14] 姜 勇, 李 广, 曾祥勇, 杨应平, 袁松柳, 金嗣昭. 钙钛矿Mn基氧化物的电子顺磁共振行为的实验研究. 物理学报, 2000, 49(9): 1846-1851. doi: 10.7498/aps.49.1846
    [15] 韩世莹, 眭云霞, 王继杨, 刘耀岗, 魏景谦. 掺V4+的KTiOPO4单晶的电子顺磁共振研究. 物理学报, 1993, 42(5): 859-863. doi: 10.7498/aps.42.859
    [16] 韩世莹, 眭云霞, 王福泉. 宝石级锆石中Gd3+的电子顺磁共振. 物理学报, 1991, 40(1): 149-153. doi: 10.7498/aps.40.149
    [17] 韩世莹. 单晶电子顺磁共振研究中零场分裂张量主轴的确定. 物理学报, 1989, 38(2): 317-322. doi: 10.7498/aps.38.317
    [18] 金通政, 韩世莹, 睦云霞. α-Al2O3单晶中Fe3+离子的电子顺磁共振. 物理学报, 1988, 37(1): 147-151. doi: 10.7498/aps.37.147
    [19] 董太乾. 一种新型的电子顺磁共振波谱仪. 物理学报, 1963, 19(6): 407-408. doi: 10.7498/aps.19.407
    [20] 董太乾. 调频调场式电子顺磁共振波谱仪. 物理学报, 1963, 19(12): 816-823. doi: 10.7498/aps.19.816
计量
  • 文章访问数:  2733
  • PDF下载量:  1243
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2015-01-04
  • 刊出日期:  2015-05-05

基于电子顺磁共振的锶铁氧体磁特性研究

  • 1. 中国矿业大学理学院物理系, 徐州 221116
    基金项目: 中央高校基本科研业务费专项基金(批准号: 2013xk04)资助的课题.

摘要: 为了研究配料、温度、氧环境和掺杂等条件对锶铁氧体的磁性能的影响问题, 利用溶胶-凝胶法制备了锶铁氧体粉末, 建立了一种基于电子顺磁共振技术研究锶铁氧体粉末的磁特性的方法. 用电子顺磁共振波谱仪对烧结后的产物进行测试发现: 400 ℃预烧下, 锶铁摩尔比为1:9时, 中间产物顺磁相-Fe2O3含量最多, 高于400 ℃时其含量减少, 亚铁磁相增加, 并确定最佳煅烧温度介于800-900 ℃. 这是由于外磁场和其他磁场综合作用产生亚铁磁相, 进而产生较强的磁矩相互作用所致. 结合工业实际应用, 发现缺氧退火环境下, 顺磁相-Fe2O3含量较大, 不利于亚铁磁相生成; X-射线衍射(XRD)表征结果表明: 除了少量杂相, 其余均为顺磁相和亚铁磁相; 电子顺磁共振谱和XRD 谱检测结果综合表明, 锶铁摩尔比为1:9时, 最终产物的顺磁相含量最少, 亚铁磁相含量最多, 磁性最强; 毫特斯拉计的剩磁检测结果也证实了上述结果. 掺杂实验发现镧离子占锶镧总摩尔数的20% 至30% 时, 能够有效降低顺磁相的产生, 增强最终产物的亚铁磁性.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回