搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散射介质中层间杂质检测效率的影响因素及分析

周飞 丁天怀

引用本文:
Citation:

散射介质中层间杂质检测效率的影响因素及分析

周飞, 丁天怀

Influential factors and analysis of detecting buried trash in scattering media

Zhou Fei, Ding Tian-Huai
PDF
导出引用
  • 散射介质中层间杂质检测是一个非常重要的研究课题.改进现有的Monte Carlo方法,模拟大量光子在散射介质中的传输,得到入射光强、杂质埋藏深度、介质折射率、介质散射系数和各向异性因子对光学透反射成像法检测层间杂质效率的影响规律.结果表明,入射光强、杂质埋藏深度和介质折射率对透反射成像检测结果均有影响,且影响规律相似.增加入射光强、减小杂质埋藏深度或减小介质折射率均可提高反射光成像的检测效率;增大入射光强、减小介质折射率、减小介质散射系数或增大各向异性因子均可提高透射光成像的检测效率.这些规律对散射介质中层间杂质检测具有一定指导意义.
    Detection of buried trash in scattering media is a very important research project. Detection efficiency is influenced by several imaging parameters, such as incident light intensity, trash buried depth, medium refractivity, medium scattering coefficient and medium anisotropic factor. Firstly, current Monte Carlo algorithm is revised. Secondly, influential laws of those parameters are researched by simulating a great number of photons propagating in a scattering medium. The results indicate that light intensity, trash buried depth and medium refractivity greatly affect both reflection and transmission imaging results; and their influential laws are similar. Detection efficiency of reflection imaging can be improved by increasing light intensity, reducing trash buried depth or medium refractivity. Detection efficiency of transmission imaging can be improved by increasing light intensity, reducing medium refractivity and scattering coefficient, or increasing anisotropic factor. These conclusions have universal significance of guidance in the detection of buried trash in scattering media.
    • 基金项目: 江苏省科技攻关计划(批准号:BE2007056)资助的课题.
    [1]

    Canpolat M, Akyuz M, Gokhan G A, Gurer E I, Tuncer R 2009 J. Biomed. Opt. 14 054021

    [2]

    Doxaran D, Babin M, Leymarie E 2007 Opt. Express 15 12834

    [3]

    Jia D Y, Ding T H 2005 Opt. Eng. 44 076402

    [4]

    Chandrasekhar S 1950 Radiative Transfer (Oxford: Clarendon Press) p37

    [5]

    Gate L F 1974 Appl. Opt. 13 236

    [6]

    Contini D, Martelli F, Zaccanti G 1997 Appl. Opt. 36 4587

    [7]

    Xu T, Zhang C P, Tian J G, Song F, Wang X Y, Zhao C M 2005 Chin. Phys. Lett. 22 1660

    [8]

    Kim A D, Ishimaru A 1998 Appl. Opt. 37 5313

    [9]

    Li J P, Chen B Q 2005 J. Appl. Opt. 26 20 (in Chinese) [李剑平、陈冰泉 2005 应用光学 26 20]

    [10]

    Wilson B C, Adam G 1983 Med. Phys. 10 824

    [11]

    Yun T, Zeng N, Li W 2009 Opt. Express 17 16590

    [12]

    Xu T, Zhang C P, Chen G Y 2005 Chin. Phys. 14 1813

    [13]

    Huang Y, Liang X G, Xia X L 2005 J. Quant. Spectrosc. Radiat. Transfer 92 111

    [14]

    Pery E, Guillemin F 2009 J. Biomed. Opt. 14 024048

    [15]

    Henyey L G, Greeenstein J L 1941 J. Astro. Phys. 93 70

    [16]

    Peters V G, Wyman D R 1990 Phys. Med. Biol. 35 1317

    [17]

    Cheong W F, Prahl S A, Welch A J 1990 IEEE J. Quantum Electron. 26 2166

    [18]

    Wang L, Jacquesa S L, Zheng L 1995 Comput. Meth. Prog. Biol. 47 131

    [19]

    Wang J G, Wang G Y, Xu Z Z 2008 Chin. Phys. Lett. 25 530

    [20]

    Jia D Y, Ding T H 2006 J. Tsinghua Univ. (Sci. Tech.Ed.) 46 176 (in Chinese) [郏东耀、丁天怀 2006 清华大学学报(自然科学版) 46 176]

    [21]

    Jia D Y, Ding T H 2005 Acta Phys. Sin. 54 4058 (in Chinese) [郏东耀、丁天怀 2005 物理学报 54 4058]

    [22]

    Yeh A T, Hirshburg J 2006 J. Biomed. Opt. 11 014003

    [23]

    Jia D Y, Ding T H 2005 Meas. Sci. Tech. 16 1355

    [24]

    Xu L Q, Li H, Xiao Z Y 2008 Acta Phys. Sin. 57 6030 (in Chinese) [徐兰青、李 晖、肖郑颖 2008 物理学报 57 6030]

    [25]

    Mu T K, Zhang C M 2010 Chin. Phys. B 19 060702

  • [1]

    Canpolat M, Akyuz M, Gokhan G A, Gurer E I, Tuncer R 2009 J. Biomed. Opt. 14 054021

    [2]

    Doxaran D, Babin M, Leymarie E 2007 Opt. Express 15 12834

    [3]

    Jia D Y, Ding T H 2005 Opt. Eng. 44 076402

    [4]

    Chandrasekhar S 1950 Radiative Transfer (Oxford: Clarendon Press) p37

    [5]

    Gate L F 1974 Appl. Opt. 13 236

    [6]

    Contini D, Martelli F, Zaccanti G 1997 Appl. Opt. 36 4587

    [7]

    Xu T, Zhang C P, Tian J G, Song F, Wang X Y, Zhao C M 2005 Chin. Phys. Lett. 22 1660

    [8]

    Kim A D, Ishimaru A 1998 Appl. Opt. 37 5313

    [9]

    Li J P, Chen B Q 2005 J. Appl. Opt. 26 20 (in Chinese) [李剑平、陈冰泉 2005 应用光学 26 20]

    [10]

    Wilson B C, Adam G 1983 Med. Phys. 10 824

    [11]

    Yun T, Zeng N, Li W 2009 Opt. Express 17 16590

    [12]

    Xu T, Zhang C P, Chen G Y 2005 Chin. Phys. 14 1813

    [13]

    Huang Y, Liang X G, Xia X L 2005 J. Quant. Spectrosc. Radiat. Transfer 92 111

    [14]

    Pery E, Guillemin F 2009 J. Biomed. Opt. 14 024048

    [15]

    Henyey L G, Greeenstein J L 1941 J. Astro. Phys. 93 70

    [16]

    Peters V G, Wyman D R 1990 Phys. Med. Biol. 35 1317

    [17]

    Cheong W F, Prahl S A, Welch A J 1990 IEEE J. Quantum Electron. 26 2166

    [18]

    Wang L, Jacquesa S L, Zheng L 1995 Comput. Meth. Prog. Biol. 47 131

    [19]

    Wang J G, Wang G Y, Xu Z Z 2008 Chin. Phys. Lett. 25 530

    [20]

    Jia D Y, Ding T H 2006 J. Tsinghua Univ. (Sci. Tech.Ed.) 46 176 (in Chinese) [郏东耀、丁天怀 2006 清华大学学报(自然科学版) 46 176]

    [21]

    Jia D Y, Ding T H 2005 Acta Phys. Sin. 54 4058 (in Chinese) [郏东耀、丁天怀 2005 物理学报 54 4058]

    [22]

    Yeh A T, Hirshburg J 2006 J. Biomed. Opt. 11 014003

    [23]

    Jia D Y, Ding T H 2005 Meas. Sci. Tech. 16 1355

    [24]

    Xu L Q, Li H, Xiao Z Y 2008 Acta Phys. Sin. 57 6030 (in Chinese) [徐兰青、李 晖、肖郑颖 2008 物理学报 57 6030]

    [25]

    Mu T K, Zhang C M 2010 Chin. Phys. B 19 060702

  • [1] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦. 物理学报, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [3] 叶晴莹, 王文静, 邓楚楚, 陈水源, 张鑫源, 王雅婧, 黄秋怡, 黄志高. 缺陷铁纳米环体系的磁特性研究. 物理学报, 2019, 68(10): 107502. doi: 10.7498/aps.68.20182271
    [4] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [5] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [8] 胡志良, 周斌, 曾智蓉, 梁天骄. 粒子(E45 MeV)核内级联Monte Carlo模拟程序研究. 物理学报, 2016, 65(23): 232501. doi: 10.7498/aps.65.232501
    [9] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [10] 余波, 应阳君, 许海波. 惯性约束聚变的中子半影成像诊断系统的优化研究. 物理学报, 2010, 59(6): 4100-4109. doi: 10.7498/aps.59.4100
    [11] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [12] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [13] 章法强, 杨建伦, 李正宏, 应纯同, 刘广均. 14MeV中子照相中散射中子对成像影响的Monte Carlo模拟. 物理学报, 2007, 56(6): 3577-3583. doi: 10.7498/aps.56.3577
    [14] 关治强, 薛岩频, 林 海, 何贵丽, 吴晨旭. 钠离子浓度对核小体纤维结构影响的Monte Carlo模拟. 物理学报, 2006, 55(1): 460-464. doi: 10.7498/aps.55.460
    [15] 王 凌, 徐之海, 冯华君. 多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真. 物理学报, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [16] 郑 宏, 王绍青, 成会明. 微孔对单壁纳米碳管储氢性能的影响. 物理学报, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
    [17] 邵元智, 钟伟荣, 林光明. 三维X-Y模型的滞后标度和动态相变行为. 物理学报, 2003, 52(9): 2309-2313. doi: 10.7498/aps.52.2309
    [18] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [19] 杨 宁, 陈光华, 张 阳, 公维宾, 朱鹤孙. 薄膜生长的理论模型与Monte Carlo模拟. 物理学报, 2000, 49(11): 2225-2229. doi: 10.7498/aps.49.2225
    [20] 蒋祺, 龚昌德. 等能谷间杂质散射对无序层状系统电导率的影响. 物理学报, 1989, 38(4): 600-606. doi: 10.7498/aps.38.600
计量
  • 文章访问数:  7410
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-26
  • 修回日期:  2010-07-20
  • 刊出日期:  2010-06-05

/

返回文章
返回