搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代算法的不同状态散射光场聚焦

段美刚 赵映 左浩毅

引用本文:
Citation:

基于迭代算法的不同状态散射光场聚焦

段美刚, 赵映, 左浩毅

Focusing scattering light field with different states based on iterative algorithm

Duan Mei-Gang, Zhao Ying, Zuo Hao-Yi
PDF
HTML
导出引用
  • 透过散射介质传递光学信息在生物医学、航空航天等领域具有广阔的应用前景. 但是, 当光通过散射介质后会引起波前畸变, 导致光学信息失真. 基于波前振幅调制技术是利用优化算法不断对入射光波前振幅进行调整, 找到可使目标区域光强最大对应的波前振幅分布. 实验主要研究通过波前振幅调制使透过散射介质的空间光实现光聚焦, 讨论在不同持续时间的散射光场中控球后卫算法与遗传算法对散射光场的调控能力. 实验结果表明, 在散射介质持续时间相同的情况下, 控球后卫算法可以实现比遗传算法更高增强因子的聚焦点以及更均匀的多点聚焦.
    Transmitting optical information through scattering medium has broad application prospects in biomedical, aerospace and other fields. However, the light passing through the scattering medium will cause wavefront distortion and optical information blurring. Wavefront shaping technology uses a mathematical matrix to characterize the characteristics of scattering medium, which can achieve refocusing and imaging after light propagation through the scattering medium. It mainly includes optical phase conjugation, optical transmission matrix and wavefront shaping based on iterative optimization. However, the iterative wavefront shaping is considered to be a cost-effective method. Based on the wavefront amplitude modulation technology, the wavefront amplitude of the incident light is continuously adjusted by using the optimization algorithm to find the corresponding wavefront amplitude distribution that can maximize the light intensity in the target area. The system generates binary patterns implemented with digital-micromirror device (DMD) based on on-off state of micromirror, where “on” represents 1 and “off” refers to 0. The DMD has a high refresh rate and can achieve high speed wavefront amplitude modulation by using the iteration algorithm. In the experiment, the scattering medium is prepared with TiO2, water and gelatin, whose persistence times are controlled with the water-gelatin ratio (WGR). In addition, the Pearson correlation coefficient (Cor) curve obtained through 300-s-measurement under different WGR conditions, which shows that the greater WGR, the shorter the persistence time is. The experiment mainly studies the focusing of the spatial light through scattering media by wavefront amplitude modulation, and discusses the ability of point guard algorithm (PGA) and genetic algorithm (GA) to control the scattered light field with different persistence times in 64 × 64 segments. The experimental results show that the PGA can achieve higher enhancement factor and more uniform multi-point focusing than the GA after 1000 iterations in the scattering medium with the same persistence time. The relative standard deviation value is inversely proportional to the WGR value when multi-point focusing can be completed. We also demonstrate that GA can only achieve single-point focusing when WGR = 40, and it cannot accomplish multi-point focusing in self-made scattering medium. This study not only verifies a method to achieve focusing scattering light field, but also provides a new scheme for testing the performance of the iterative wavefront shaping.
      通信作者: 段美刚, duanmg.sxu@foxmail.com ; 左浩毅, zuohaoyi@scu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 12204439)和太原科技大学博士科研启动基金(批准号: 20232104)资助的课题.
      Corresponding author: Duan Mei-Gang, duanmg.sxu@foxmail.com ; Zuo Hao-Yi, zuohaoyi@scu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12204439) and the Staring Foundation of Scientific Research for the Doctor of the Taiyuan University of Science and Technology Foundation, China (Grant No. 20232104).
    [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Lai X T, Li Q Y, Chen Z Y, Shao X P, Pu J X 2021 Opt. Express 29 43280Google Scholar

    [3]

    赵富, 胡渝曜, 王鹏, 刘军 2023 物理学报 72 154201Google Scholar

    Zhao F, Hu Y Y, Wang P, Liu J 2023 Acta Phys. Sin. 72 154201Google Scholar

    [4]

    Yang J M, He Q Z, Liu L X, Qu Y, Shao R J, Song B W, Zhao Y Y 2021 Light Sci. Appl. 10 149Google Scholar

    [5]

    Zhao Y Y, He Q Z, Li S N, Yang J M 2021 Opt. Lett. 46 1518Google Scholar

    [6]

    Duan M G, Yang Z G, Zhao Y, Fang L J, Zuo H Y, Li Z S, Wang D Q 2022 Opt. Laser. Technol. 156 108529Google Scholar

    [7]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    李元铖, 翟爱平, 张腾, 赵文静, 王东 2022 光学学报 42 1411002Google Scholar

    Li Y C, Zhai A P, Zhang T, Zhao W J, Wang D 2022 Acta Opt. Sin. 42 1411002Google Scholar

    [10]

    李琼瑶, 扎西巴毛, 陈子阳, 蒲继熊 2020 光学学报 40 0111016Google Scholar

    Li Q Y, Zhaxi B M, Chen Z Y, Pu J X 2020 Acta Opt. Sin. 40 0111016Google Scholar

    [11]

    张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖 2017 物理学报 66 114202Google Scholar

    Zhang C, Fang L J, Zhu J H, Zuo H Y, Gao F H, Pang L 2017 Acta Phys. Sin. 66 114202Google Scholar

    [12]

    张熙程, 方龙杰, 庞霖 2018 物理学报 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [13]

    罗嘉伟, 伍代轩, 梁家俊, 沈乐成 2024 激光与光电子学进展 61 1011008Google Scholar

    Luo J W, Wu D X, Liang J J, Shen Y C 2024 Laser Optoelectron. Prog. 61 1011008Google Scholar

    [14]

    Zhou S H, Xie H, Zhang C C, Hua Y Z, Zhang W H, Chen Q, Gu G H, Sui X B 2021 Optik 244 167516Google Scholar

    [15]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [16]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [17]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photonics 4 320Google Scholar

    [18]

    Conkey D B, Brown A N 2012 Opt. Express 20 4840Google Scholar

    [19]

    Woo C M, Zhao Q, Zhong T, Li H H, Yu Z P, Lai P X 2022 APL Photonics 7 046109Google Scholar

    [20]

    Feng Q, Yang F, Xu X Y, Zhang B, Ding Y C, Liu Q 2019 Opt. Express 27 36459Google Scholar

    [21]

    Conkey D B, Piestun R 2012 Opt. Express 20 27312Google Scholar

    [22]

    Duan M G, Zhao Y, Yang Z G, Deng X, Huangfu H L, Zuo H Y, Li Z S, Wang D Q 2023 Opt. Comm. 548 129832Google Scholar

    [23]

    Duan M G, Zhao Y, Huangfu H L, Deng X, Zuo H Y, Luo S R, Li Z S, Wang D Q 2023 Results Phys. 52 106767Google Scholar

    [24]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071Google Scholar

    [25]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733Google Scholar

    [26]

    Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430Google Scholar

  • 图 1  散射光场聚焦示意图 (a)光透过散射介质的散斑; (b)调制后的光透过散射介质的聚焦; (c) PGA流程图

    Fig. 1.  Schematics of focusing of scattering field: (a) Speckle formed by light passing scattering medium; (b) focusing by modulated light passing scattering medium; (c) the flowchart of PGA.

    图 2  不同WGR下散斑相关系数随时间的变化

    Fig. 2.  Variation curves of speckle correlation with time under different WGR.

    图 3  不同WGR下每隔30 s散斑随时间的变化图

    Fig. 3.  Variation of speckle with time every 30 s under different WGR.

    图 4  实验装置

    Fig. 4.  Experimental setup.

    图 5  不同WGR下PGA和GA的单点聚焦实验结果 (a) PBR值随迭代次数的变化; (b)迭代过程中的最佳聚焦效果; 比例尺为150 μm

    Fig. 5.  Experimental results of single-point focusing of PGA and GA under different WGR: (a) Variation curves of PBR value with iteration times; (b) the best focusing effect in iterative process; Scalar: 150 μm.

    图 6  不同WGR下PGA和GA的多点聚焦实验结果 (a) 2点聚焦; (b) 3点聚焦; 比例尺为150 μm

    Fig. 6.  Experimental results of multi-point focusing of PGA and GA under different WGR: (a) Two-point focusing; (b) three-point focusing; Scalar: 150 μm.

    图 7  不同WGR下多点聚焦的平均PBR和相对标准偏差RSD (N是焦点个数) (a) PGA和GA的平均PBR; (b) PGA的相对标准偏差RSD;

    Fig. 7.  Average PBR and relative standard deviation RSD of multi-point focusing under different WGR: (a) The average PBR of PGA and GA; (b) the relative standard deviation RSD of PGA. N is the number of focal points.

  • [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Lai X T, Li Q Y, Chen Z Y, Shao X P, Pu J X 2021 Opt. Express 29 43280Google Scholar

    [3]

    赵富, 胡渝曜, 王鹏, 刘军 2023 物理学报 72 154201Google Scholar

    Zhao F, Hu Y Y, Wang P, Liu J 2023 Acta Phys. Sin. 72 154201Google Scholar

    [4]

    Yang J M, He Q Z, Liu L X, Qu Y, Shao R J, Song B W, Zhao Y Y 2021 Light Sci. Appl. 10 149Google Scholar

    [5]

    Zhao Y Y, He Q Z, Li S N, Yang J M 2021 Opt. Lett. 46 1518Google Scholar

    [6]

    Duan M G, Yang Z G, Zhao Y, Fang L J, Zuo H Y, Li Z S, Wang D Q 2022 Opt. Laser. Technol. 156 108529Google Scholar

    [7]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    李元铖, 翟爱平, 张腾, 赵文静, 王东 2022 光学学报 42 1411002Google Scholar

    Li Y C, Zhai A P, Zhang T, Zhao W J, Wang D 2022 Acta Opt. Sin. 42 1411002Google Scholar

    [10]

    李琼瑶, 扎西巴毛, 陈子阳, 蒲继熊 2020 光学学报 40 0111016Google Scholar

    Li Q Y, Zhaxi B M, Chen Z Y, Pu J X 2020 Acta Opt. Sin. 40 0111016Google Scholar

    [11]

    张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖 2017 物理学报 66 114202Google Scholar

    Zhang C, Fang L J, Zhu J H, Zuo H Y, Gao F H, Pang L 2017 Acta Phys. Sin. 66 114202Google Scholar

    [12]

    张熙程, 方龙杰, 庞霖 2018 物理学报 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [13]

    罗嘉伟, 伍代轩, 梁家俊, 沈乐成 2024 激光与光电子学进展 61 1011008Google Scholar

    Luo J W, Wu D X, Liang J J, Shen Y C 2024 Laser Optoelectron. Prog. 61 1011008Google Scholar

    [14]

    Zhou S H, Xie H, Zhang C C, Hua Y Z, Zhang W H, Chen Q, Gu G H, Sui X B 2021 Optik 244 167516Google Scholar

    [15]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [16]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [17]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photonics 4 320Google Scholar

    [18]

    Conkey D B, Brown A N 2012 Opt. Express 20 4840Google Scholar

    [19]

    Woo C M, Zhao Q, Zhong T, Li H H, Yu Z P, Lai P X 2022 APL Photonics 7 046109Google Scholar

    [20]

    Feng Q, Yang F, Xu X Y, Zhang B, Ding Y C, Liu Q 2019 Opt. Express 27 36459Google Scholar

    [21]

    Conkey D B, Piestun R 2012 Opt. Express 20 27312Google Scholar

    [22]

    Duan M G, Zhao Y, Yang Z G, Deng X, Huangfu H L, Zuo H Y, Li Z S, Wang D Q 2023 Opt. Comm. 548 129832Google Scholar

    [23]

    Duan M G, Zhao Y, Huangfu H L, Deng X, Zuo H Y, Luo S R, Li Z S, Wang D Q 2023 Results Phys. 52 106767Google Scholar

    [24]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071Google Scholar

    [25]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733Google Scholar

    [26]

    Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430Google Scholar

  • [1] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [8] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [9] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [11] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场. 物理学报, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [13] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [14] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [15] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [16] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [18] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [19] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [20] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究. 物理学报, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
计量
  • 文章访问数:  1534
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-04-10
  • 上网日期:  2024-05-08
  • 刊出日期:  2024-06-20

/

返回文章
返回