搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计算偏振彩色傅里叶叠层成像:散射光场偏振特性的复用技术

相萌 何飘 王天宇 袁琳 邓凯 刘飞 邵晓鹏

引用本文:
Citation:

计算偏振彩色傅里叶叠层成像:散射光场偏振特性的复用技术

相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏

Computational polarized colorful Fourier Ptychography imaging: a novel information reuse technique of polarization of scattering light field

Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng
PDF
导出引用
  • 针对目前透过散射介质成像技术中宽谱导致目标信息被淹没于背景干扰中,且散射对波长的敏感性使得频谱信息混叠产生的色彩畸变严重,无法实现彩色超分辨率成像的问题,提出了基于散射光场偏振信息复用的计算偏振彩色傅里叶叠层成像技术.该技术深入分析散射场的强度及偏振分布特性,综合利用散射场中目标于背景干扰的偏振信息差异性和唯一性表征,结合光场的偏振共模抑制特性和偏振的波长相关性,分通道实现宽谱散射场中的背景干扰信息和目标信息的有效分离.此外,深度挖掘散射光场中频谱信息的差异性,利用傅里叶叠层技术实现散射光场频谱信息拼接,进而获得透过散射介质的彩色高分辨率成像效果.实验结果表明,该方法不仅能够实现透过散射介质的超分辨率重建,而且偏振信息的复用对于谱宽造成的信号混叠有明显的抑制作用,大幅提升了重建图像的信噪比和对比度,抑制了色彩畸变,在未来的透过散射介质成像具有良好的应用前景.
    Fourier ptychography for high-resolution imaging has been a revolutionizing technical, since it enables providing abundant information of target scene via varying illumination or pupil scanning. However, many objects are hidden by dynamic scattering media, such as biological tissues and mist, that scramble the light paths and yield the scattering wall, let alone high-resolution imaging. It is worth noting that the scatting effect caused by the scattering media will decrease the correlation of scattered-light-field, which makes the information aliasing difficult to extract. The situation becomes worse if the image scene is in color. Typically, the wave front shaping, optical transmission matrix and speckle correlation technique can successfully recover hidden target form the scattered-light-field. Notably, the physical model of conventional method is limited by the extraction difficultly of target information from the strong scattering environment, especially in broadband light illumination imaging. Thus, it is restrictive to achieve super-resolution color imaging through scattering media by utilizing the current techniques. In this manuscript, we present a computational polarized colorful Fourier ptychography imaging approach for super-resolution seeing through dynamic scattering media in broadband. In order to solve the challenge that current imaging methods are limited by the spectral width of the light illumination; the polarization characteristics of the scattered-light-field is explored. After retrieving a series of sub-polarized images, which brings the different frequency information caused by the motion of scattering media, processed by the common-mode rejection of polarization characteristic, our computational approach utilizes the iterative optimization algorithm to recover the scene. Notably, owning to the differences between the target and background scattering information of the scattered-light-field with different rotate angles of polarization, we can obtain two images where the object information contained in the scattering field and the background scattering information are dominant. Afterwards, a serious of images constitute of target and background information are adopted to the iterative Fourier Ptychography procedure to update the target image based on the sequence of acquired images until estimate converges. During the updating procedure, the scattering effect could be removed, and the spatial-resolution is improved. Compared with conventional scattering imaging model, the proposed method is capable of super-resolution color imaging and descattering in various conditions, with the color case problem solved as well. Furthermore, the proposed method is easy to incorporate in a conventional Fourier Ptychography imaging system to achieve high-fidelity images with better quality and valid detail information. Therefore, the proposed method has the potential to assist super-resolution imaging to more practical applications.
  • [1]

    Dong Y, Liu S, Shen Y, He H, Ma H 2020 Biomed. Opt. Express 11 4960

    [2]

    Chen H, Wu X, Liu G, Chen Z, Pu J 2023 Results in Physics 44 106134

    [3]

    Su Y, Ge J jing, Wang Y, Wang L, Wang Y, Zheng Z, Shao X 2023 Chinese Optics 16 258

    [4]

    Deng Hongyan, Su Yun, Zheng Guoxian, Zhao Ming, Zhang Yue, Tian Zhiming 2023 ACTA PHOTONICA SINICA 52 0552219

    [5]

    Bian Y, Li H, Wang Y, Zheng Z, Liu X 2015 Applied Optics 54 8241

    [6]

    Li L, Pan A, Li C, Zhao H 2023 Optics Communications 537 129393

    [7]

    Pan A 2020 Ph. D. Dissertation (Beijing:Xi'an Institute of Optics&Precision Mechanics, Chinese Academy of Sciences)(in Chinese)

    [8]

    Zheng G, Horstmeyer R, Yang C 2013 Nature Photonics 7 739

    [9]

    Ou X, Horstmeyer R, Yang C, Zheng G 2013 Opt. Lett. 38 4845

    [10]

    Wang M, Zhang Y, Chen Q, Sun J, Fan Y, Zuo C 2017 Optics Communications 7

    [11]

    Pan A, Zhang Y, Wen K, Zhou M, Min J, Lei M, Yao B 2018 Opt. Express 26 23119

    [12]

    Tian Z, Zhao M, Yang D, Wang S, Pan A 2023 Photon. Res. 11 2072

    [13]

    Holloway J, Wu Y, Sharma M K, Cossairt O, Veeraraghavan A 2017 Science advances 3 e1602564

    [14]

    Xiang M, Pan A, Zhao Y, Fan X, Zhao H, Li C, Yao B 2021 Opt. Lett. 46 29

    [15]

    Dong S, Nanda P, Shiradkar R, Guo K, Zheng G 2014 Opt. Express 22 20856

    [16]

    Jiang S, Liao J, Bian Z, Song P, Soler G, Hoshino K, Zheng G 2019 Opt. Lett. 44 811

    [17]

    Liu Q, Chen Y, Liu W, Han Y, Cao R, Zhang Z, Kuang C, Liu X 2019 Optics and Lasers in Engineering 123 45

    [18]

    Xie Z L, Qi B, Ma H T, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2016 Chinese Phys. Lett. 33 044206

    [19]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2015 San Francisco, California, United States, 2015-03-10 pp93350W

    [20]

    Zhu L, Soldevila F, Moretti C, d'Arco A, Boniface A, Shao X, De Aguiar H B, Gigan S 2022 Nat Commun 13 1447

    [21]

    Gao Y, Chen J, Wang A, Pan A, Ma C, Yao B 2021 Sci. China Phys. Mech. Astron. 64 114211

    [22]

    Bian Yinxu, Xing Tao, Deng Weijie, Xian Qin, Qiao Honglei, Yu Qian, Peng Jilong, Yang Xiaofei, Jiang Yannan, Wang Jiaxiong, Yang Shenmin, Shen Renbin, Shen Hua, Kuang Cuifang 2022 Infrared and Laser Engineering 51 20210891

    [23]

    Hu H, Jin H, Liu H, Li X, Cheng Z, Liu T, Zhai J 2023 Optics&Laser Technology 166 109632

    [24]

    Schechner Y Y, Karpel N 2006 IEEE Journal of Oceanic Engineering 30 570

    [25]

    Han P, Liu F, Yang K, Ma J, Li J, Shao X 2017 Appl. Opt. 56 6631

    [26]

    Andreoli D, Volpe G, Popoff S, Katz O, Grésillon S, Gigan S 2015 Scientific Reports 5 10347

    [27]

    Tao H, Lv J, Liang J, Zhao B, Chen Y, Zheng K, Zhao Y, Wang W, Qin Y, Liu G, Sheng K 2023 Photonics 10 566

    [28]

    Tyo J S 1998 J. Opt. Soc. Am. A 15 359

    [29]

    Yang L, Liang J, Zhang W, Ju H, Ren L, Shao X 2019 Optics Communications 438 96

    [30]

    Luo M R, Cui G, Rigg B 2001 Color Research&Application 26 340

  • [1] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, doi: 10.7498/aps.72.20230639
    [2] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, doi: 10.7498/aps.72.20230551
    [3] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术. 物理学报, doi: 10.7498/aps.72.20222017
    [4] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, doi: 10.7498/aps.71.20220954
    [5] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, doi: 10.7498/aps.71.20220629
    [6] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, doi: 10.7498/aps.70.20210703
    [7] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, doi: 10.7498/aps.70.20210314
    [8] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, doi: 10.7498/aps.69.20200920
    [9] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, doi: 10.7498/aps.68.20182229
    [10] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, doi: 10.7498/aps.67.20180692
    [11] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, doi: 10.7498/aps.66.160702
    [12] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, doi: 10.7498/aps.65.040501
    [13] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, doi: 10.7498/aps.64.038501
    [14] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, doi: 10.7498/aps.64.224203
    [15] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, doi: 10.7498/aps.63.110705
    [16] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, doi: 10.7498/aps.63.110704
    [17] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, doi: 10.7498/aps.62.060704
    [18] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, doi: 10.7498/aps.60.064209
    [19] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, doi: 10.7498/aps.55.6387
    [20] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法. 物理学报, doi: 10.7498/aps.50.1486
计量
  • 文章访问数:  128
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-06

/

返回文章
返回