搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏振复用散射成像

赵富 胡渝曜 王鹏 刘军

引用本文:
Citation:

偏振复用散射成像

赵富, 胡渝曜, 王鹏, 刘军

Polarization multiplexing scattering imaging

Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun
PDF
HTML
导出引用
  • 散斑相关成像因为记忆效应的要求, 通常需要空间非相干光源, 这使得成像装置变得复杂且光源利用率低, 同时也限制了这种方法在空间相干光源照射情况下的应用. 本文提出了一种基于空间相干光照明情况下, 通过复用不同偏振方向散斑图案实现的散斑相关成像新方法, 简称偏振复用散射成像. 新方法通过旋转放置在照射光路中的偏振器获得不同偏振方向的散斑图案, 再将这些图案叠加并平均, 最后使用相位恢复算法就可以重建物体图像. 与常规散斑相关成像技术的比较, 本文提出的方法降低了对光源的要求, 提高了光源的利用率, 使得装置更加简单紧凑. 实验结果表明这种方法的可行性, 并具有较强的环境适应性, 从而可拓展散斑相关成像方法的应用范围.
    Imaging through scattering media, such as clouds, biological tissues, and seawater, has broad application prospects in transportation, medical diagnosis, and information technology. Researchers have proposed various techniques to obtain images from scattered light passing through the scattering media, among which speckle correlation imaging has developed rapidly. Speckle correlation imaging requires non-coherent light sources due to the requirement of memory effect. This requirement makes the imaging device complex, and the light source utilization rate low. Additionally, this method is limited in its application under the illumination of spatially coherent light sources. This paper proposes a new method of speckle correlation imaging based on the illumination of spatially coherent light, which is achieved by multiplexing different polarization direction speckle patterns, called polarization multiplexing scattering imaging. To achieve the decoherence of the light source, previous approaches have used a rotating scattering medium to generate time-varying speckle patterns that are integrated over the shutter time of the camera to eliminate coherent noise, or multiplexed wavelength-dependent speckle multiplexing to achieve this. This paper uses spatially incoherent light sources to obtain different polarization direction speckle patterns by rotating polarizers placed in the illumination path. These patterns are superimposed and averaged, and phase recovery algorithm is used to reconstruct the object image. This experiment uses Ping-Pang (PP) algorithm with fusion error reduction and hybrid input-output algorithm to reconstruct targets quickly and with high quality. The comparison of the reconstruction results of different numbers of reused speckle patterns demonstrates that using more speckle patterns can achieve better image quality. Compared with conventional speckle correlation imaging technology, the proposed method reduces the requirements of light sources, improves the utilization rate of light sources, and makes the device simpler and more compact. Experimental results show that this method is feasible and has strong environmental adaptability, which can expand the application scope of speckle correlation imaging methods.
      通信作者: 刘军, jliu@siom.ac.cn
    • 基金项目: 上海市自然科学基金(批准号: 20ZR1464500)和上海市市级科技重大专项(批准号: 2017SHZDZX02)资助的课题
      Corresponding author: Liu Jun, jliu@siom.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Shanghai Municipal, China (Grant No. 20ZR1464500) and the Science and Technology Major Project of Shanghai Municipal, China (Grant No. 2017SHZDZX02).
    [1]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [2]

    Katz O, Small E, Silberberg Y 2012 Nat. Photonics 6 549Google Scholar

    [3]

    Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nat. Photonics 6 283Google Scholar

    [4]

    Zhuang H C, He H X, Xie X S, Zhou J Y 2016 Sci. Rep. 6 32696Google Scholar

    [5]

    Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558Google Scholar

    [6]

    Xie X S, Zhuang H C, He H X, Xu X Q, Liang H W, Liu Y K, Zhou J Y 2018 Sci. Rep. 8 4585Google Scholar

    [7]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601Google Scholar

    [8]

    Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81Google Scholar

    [9]

    Hofer M, Brasselet S 2019 Opt. Lett. 44 2137Google Scholar

    [10]

    Freund I, Rosenbluh M, Feng S 1988 Phys. Rev. Lett. 61 2328Google Scholar

    [11]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photonics 8 784Google Scholar

    [12]

    Li X H, Greenberg J A, Gehm M E 2019 Optica 6 864Google Scholar

    [13]

    Song P M, Jiang S W, Zhang H, Bian Z C, Guo C F, Hoshino K, Zheng G A 2019 Opt. Lett. 44 3645Google Scholar

    [14]

    Horisaki R, Okamoto Y, Tanida J 2019 Opt. Lett. 44 4032Google Scholar

    [15]

    Yang W Q, Li G W, Situ G H 2018 Sci. Rep. 8 9614Google Scholar

    [16]

    Ma R, Wang Z, Zhang H H, Zhang W L, Rao Y J 2020 Opt. Lett. 45 4352Google Scholar

    [17]

    Ma R, Wang Z, Wang W Y, Zhang Y, Liu J, Zhang W L, Gomes A S L, Fan D Y 2021 Opt. Lasers Eng. 141 106567Google Scholar

    [18]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [19]

    Goodman J W 2006 Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers) pp66–77

    [20]

    Bertolotti J, Van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232Google Scholar

    [21]

    Fienup J R 1982 Appl. Optics 21 2758Google Scholar

    [22]

    Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866Google Scholar

    [23]

    肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新 2019 物理学报 68 034201Google Scholar

    Xiao X, Du S M, Zhao F, Wang J, Liu J, Li R X 2019 Acta Phys. Sin. 68 034201Google Scholar

    [24]

    Edrei E, Scarcelli G 2016 Optica 3 71Google Scholar

  • 图 1  通过散射介质成像的光学装置

    Fig. 1.  Optical setup used for imaging through the scattering media.

    图 2  空间相干光散斑相关成像 (a1), (b2), (c2)自相关; (a2)物体; (b1), (c1)散斑图案; (b3), (c3)重建图案

    Fig. 2.  Speckle correlation imaging with spatially coherent light: (a1), (b2), (c2) The autocorrelation; (a2) the object; (b1), (c1) speckle pattern; (b3), (c3) reconstruction pattern.

    图 3  不同偏振方向的散斑相关性

    Fig. 3.  Speckle correlation of different polarization directions.

    图 4  偏振复用散射相关成像 (a1), (b2), (c2), (d2), (e2)自相关; (a2)物体; (b1), (c1), (d1), (e1)散斑图案; (b3), (c3), (d3), (e3)重建图案

    Fig. 4.  Polarization multiplexed speckle correlation imaging: (a1), (b2), (c2), (d2), (e2) The autocorrelation; (a2) the object; (b1), (c1), (d1), (e1) speckle pattern; (b3), (c3), (d3), (e3) reconstruction pattern.

  • [1]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [2]

    Katz O, Small E, Silberberg Y 2012 Nat. Photonics 6 549Google Scholar

    [3]

    Mosk A P, Lagendijk A, Lerosey G, Fink M 2012 Nat. Photonics 6 283Google Scholar

    [4]

    Zhuang H C, He H X, Xie X S, Zhou J Y 2016 Sci. Rep. 6 32696Google Scholar

    [5]

    Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558Google Scholar

    [6]

    Xie X S, Zhuang H C, He H X, Xu X Q, Liang H W, Liu Y K, Zhou J Y 2018 Sci. Rep. 8 4585Google Scholar

    [7]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601Google Scholar

    [8]

    Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81Google Scholar

    [9]

    Hofer M, Brasselet S 2019 Opt. Lett. 44 2137Google Scholar

    [10]

    Freund I, Rosenbluh M, Feng S 1988 Phys. Rev. Lett. 61 2328Google Scholar

    [11]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photonics 8 784Google Scholar

    [12]

    Li X H, Greenberg J A, Gehm M E 2019 Optica 6 864Google Scholar

    [13]

    Song P M, Jiang S W, Zhang H, Bian Z C, Guo C F, Hoshino K, Zheng G A 2019 Opt. Lett. 44 3645Google Scholar

    [14]

    Horisaki R, Okamoto Y, Tanida J 2019 Opt. Lett. 44 4032Google Scholar

    [15]

    Yang W Q, Li G W, Situ G H 2018 Sci. Rep. 8 9614Google Scholar

    [16]

    Ma R, Wang Z, Zhang H H, Zhang W L, Rao Y J 2020 Opt. Lett. 45 4352Google Scholar

    [17]

    Ma R, Wang Z, Wang W Y, Zhang Y, Liu J, Zhang W L, Gomes A S L, Fan D Y 2021 Opt. Lasers Eng. 141 106567Google Scholar

    [18]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [19]

    Goodman J W 2006 Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers) pp66–77

    [20]

    Bertolotti J, Van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232Google Scholar

    [21]

    Fienup J R 1982 Appl. Optics 21 2758Google Scholar

    [22]

    Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866Google Scholar

    [23]

    肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新 2019 物理学报 68 034201Google Scholar

    Xiao X, Du S M, Zhao F, Wang J, Liu J, Li R X 2019 Acta Phys. Sin. 68 034201Google Scholar

    [24]

    Edrei E, Scarcelli G 2016 Optica 3 71Google Scholar

  • [1] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [2] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术. 物理学报, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [3] 霍永胜. 基于偏振的暗通道先验去雾. 物理学报, 2022, 71(14): 144202. doi: 10.7498/aps.71.20220332
    [4] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [5] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [6] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [7] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [8] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [9] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [10] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术. 物理学报, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [11] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [12] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [13] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [14] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [15] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [16] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [17] 郑国梁, 佘卫龙. 偏振方向对THz电光探测影响的理论研究. 物理学报, 2006, 55(3): 1061-1067. doi: 10.7498/aps.55.1061
    [18] 周国泉. 任意线偏振高斯光束的非傍轴传输. 物理学报, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [19] 王兆华, 魏志义, 张 杰. 飞秒激光脉冲的频率分辨偏振光学开关法测量研究. 物理学报, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [20] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究. 物理学报, 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
计量
  • 文章访问数:  1870
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-06-01
  • 上网日期:  2023-06-06
  • 刊出日期:  2023-08-05

/

返回文章
返回