搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于赝热光照明的单发光学散斑成像

肖晓 杜舒曼 赵富 王晶 刘军 李儒新

引用本文:
Citation:

基于赝热光照明的单发光学散斑成像

肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新

Single-shot optical speckle imaging based on pseudothermal illumination

Xiao Xiao, Du Shu-Man, Zhao Fu, Wang Jing, Liu Jun, Li Ru-Xin
PDF
HTML
导出引用
  • 散射介质对光的散射是当前限制光学成像深度或距离的一个严重的问题. 本文首先数值模拟比较了光透过随机散射介质成像研究中常用的基于光学记忆效应(memory effect, ME)和自相关(autocorrelation, AC)方法的HIO&ER算法和乒乓(Ping-Pang, PP)算法的优缺点. 通过对HIO&ER算法和PP算法的恢复效果和迭代次数进行比较, 发现PP算法在保持较高恢复效果的前提下拥有更快的运行速度. 实验中, 利用连续He-Ne激光器和旋转毛玻璃产生赝热光源, 通过物镜对随机散射介质后数毫米距离内的不同形状物体进行了单帧成像, 并采用PP算法成功地恢复出微米量级物体的实际图像. 这一研究结果将进一步促进ME和AC方法在深层生物组织医学成像研究上的应用. 最后, 实验研究了不同的物镜和散射介质的间距对成像恢复的放大率、分辨率和图像强度的影响特性, 并进行了详细研究.
    Scattering in medium is a serious problem that limits the imaging depth or imaging distance. According to the absorption and scattering of light in biological tissues, it is difficult for both excited light and signal light to penetrate biological tissues, and the scattering effect in biological tissues will destroy the phase information of signal light, so it is difficult to directly carry out high resolution imaging in deep biological tissues. In the recent studies it is surprisingly found that two-dimensional image information of an object can be directly recovered from the disordered speckle pattern with pseudothermal light sources based on the optical memory effect (ME) and autocorrelation (AC) method. In this paper, we study a speckle imaging method based on pseudothermal illumination, where the Gerchberg-Saxton algorithm is used to perform the phase recovery of the object. Here, the advantages and disadvantages of HIO&ER algorithm and ping-pang (PP) algorithm based on the ME and AC method for imaging through random scattering medium are compared by using numerical simulation. By comparing the recovery effects and the numbers of iterations between HIO&ER algorithm and PP algorithm, it is found that PP algorithm has a fast running speed when a higher recovery quality is maintained. In addition, a continuous He-Ne laser and rotating ground glass are used to produce a pseudothermal light source. And a single frame imaging of different shape objects, which are a few millimeters away from random scattering medium, is carried out by objective lens. Then PP algorithm is adopted to recover the actual image of micron object. Furthermore, we experimentally find that the magnification, resolution and image intensity, which are qualitatively studied, are seriously affected by the distance between the focal plane of the object lens and scattering medium. We find that with the increase of the distance, the obtained autocorrelation graph and retrieval graph have corresponding amplification and the object sampling point information collected on sCOMS increases, which improves its resolution. However, the scattered light intensity collected by objective lens decreases after passing through the scattering medium, making the intensity of recovered image weaken. The results of this study will further promote the application of ME and AC method in the study of deep tissue medical imaging.
      通信作者: 刘军, jliu@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11274327, 61521093, 61527821)、中国科学院仪器开发项目(批准号: YZ201538)、国家自然科学基金青年科学基金(批准号: 11804350)和上海市扬帆计划(批准号: 17YF1421300)资助的课题.
      Corresponding author: Liu Jun, jliu@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274327, 61521093, 61527821), the Instrument Developing Project of the Chinese Academy of Sciences, China (Grant No. YZ201538), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804350), and the Shanghai Sailing Program, China (Grant No. 17YF1421300).
    [1]

    Ntziachristos V 2010 Nat. Meth. 7 603Google Scholar

    [2]

    Hoffman R M 2008 Methods Cell Biol. 85 485Google Scholar

    [3]

    Yang X, Pu Y, Psaltis D 2014 Opt. Express 22 3405Google Scholar

    [4]

    Kang S, Jeong S, Choi W, Ko H, Yang T D, Joo J H, Lee J S, Lim Y S, Park Q H, Choi W 2015 Nat. Photon. 9 253Google Scholar

    [5]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232Google Scholar

    [6]

    Wu T, Dong J, Shao X, Gigan S 2017 Opt. Express 25 27182Google Scholar

    [7]

    Sudarsanam S, Mathew J, Panigrahi S, Fade J, Alouini M, Ramachandran H 2016 Sci. Rep. 6 25033Google Scholar

    [8]

    Zhuang X W 2009 Nat. Photon. 3 436Google Scholar

    [9]

    Kolenderska S M, Katz O, Fink M, Gigan S 2015 Opt. Lett. 40 534Google Scholar

    [10]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [11]

    Katz O, Small E, Guan Y, Silberberg Y 2014 Optica 1 170Google Scholar

    [12]

    He G S 2002 Prog. Quantum Electron. 26 131Google Scholar

    [13]

    Lai P, Xu X, Liu H, Suzuki Y, Wang L V 2011 J. Biomed. Opt. 16 080505Google Scholar

    [14]

    Xu X, Liu H, Wang L V 2011 Nat. Photon. 5 154Google Scholar

    [15]

    Li X H, Deng C J, Chen M L, Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar

    [16]

    Devaux F, Huy K P, Denis S, Lantz E, Moreau P A 2017 J. Opt. 19 024001Google Scholar

    [17]

    Moreau P A, Toninelli E, Gregory T, Padgett M J 2018 Laser Photon. Rev. 12 1863Google Scholar

    [18]

    Takasaki K T, Fleischer J W 2014 Opt. Express 22 31426Google Scholar

    [19]

    Schott S, Bertolotti J, Leger J F, Bourdieu L, Gigan S 2015 Opt. Express 23 13505Google Scholar

    [20]

    Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558Google Scholar

    [21]

    Berto P, Rigneault H, Guillon M 2017 Opt. Lett. 42 5117Google Scholar

    [22]

    Osnabrugge G, Horstmeyer R, Papadopoulos I N, Judkewitz B, Vellekoop I M 2017 Optica 4 886Google Scholar

    [23]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photon. 8 784Google Scholar

    [24]

    Judkewitz B, Horstmeyer R, Vellekoop I M, Papadopoulos I N, Yang C 2015 Nat. Phys. 11 684Google Scholar

    [25]

    Amir P, Ravn A E, Hervé R, Dan O, Sylvain G, Ori K 2016 Opt. Express 24 16835Google Scholar

    [26]

    Wang W, Hu X, Liu J, Zhang S, Suo J, Situ G 2015 Opt. Express 23 28416Google Scholar

    [27]

    Thrane L, Yura H T, Andersen P E 2000 J. Opt. Soc. Am. A 17 484Google Scholar

    [28]

    Antipov S P, Bogdashov A A, Chirkov A V, Denisov G G 2003 Int. J. Infrared Millimeter waves 24 1677Google Scholar

    [29]

    范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才 2018 物理学报 67 094203Google Scholar

    Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A, Xu W, Cao L C 2018 Acta Phys. Sin. 67 094203Google Scholar

    [30]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [31]

    Michelle C, Haojiang Z E, Changhuei Y 2017 Opt. Express 25 3935Google Scholar

    [32]

    Shi Y, Liu Y, Wang J, Wu T 2017 Appl. Phys. Lett. 110 231101Google Scholar

    [33]

    Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866Google Scholar

  • 图 1  散斑产生示意图

    Fig. 1.  Schematic of speckle generation.

    图 2  相位恢复算法框图

    Fig. 2.  Schematic of phase retrieval algorithm.

    图 3  成像过程的数值模拟 (a) 物体; (b) 点扩散函数; (c) 散斑图; (d) 点扩散函数AC; (e) 物体AC; (f) 散斑AC; (g) 能量谱开根; (h) 重建结果

    Fig. 3.  Simulations of imaging process: (a) Object; (b) point diffusion function; (c) speckle pattern; (d) AC of point diffusion function; (e) AC of object; (f) AC of speckle pattern; (g) square root of power spectrum; (h) result of reconstruction.

    图 4  不同迭代次数下的恢复效果 (a)—(c) HIO&ER算法的恢复结果, 其中, (a) $\beta = 1: - 0.02:0$, (b) $\beta = 1: - 0.04:0$, (c) $\beta = 1: - 0.05:0$; (d)—(f) PP算法的恢复结果, 其中, (d) $\beta = 3: - 0.02:1$, (e) $\beta = 3: - 0.05:1$, (f) $\beta = 3: - 0.1:1$

    Fig. 4.  Retrieval results in different interation times: (a)−(c) Retrieval results of HIO&ER algorithm when (a) $\beta = 1: - 0.02:0$, (b) $\beta = 1: - 0.04:0$, (c) $\beta = 1: - 0.05:0$; (d)−(f) Retrieval results of PP algorithm when (d) $\beta = 3: - 0.02:1$, (e) $\beta = 3: - 0.05:1$, (f) $\beta = 3: - 0.1:1$.

    图 5  通过散射介质成像的光学装置 (a)实验光路图; (b)赝热光的产生; (c)散斑的产生

    Fig. 5.  Optical setups used for imaging through the scattering media: (a) Optical path in experiment; (b) generation of pseudothermal light source; (c) generation of speckle pattern.

    图 6  不同数字的实验结果 (a)—(e)数字“1”的恢复过程, 其中, (a)物体, (b) sCOMS成像, (c)散斑AC, (d)能量谱开根, (e)重建结果; (f)—(t)数字“3”, “5”, “6”的恢复过程

    Fig. 6.  Experimental results for different numbers: (a)−(e) Retrieval process of number “1”, namely, (a) object, (b) sCOMS image, (c) autocorrelaction of speckle pattern, (d) square root of power spectrum, (e) result of reconstruction; (f)−(t) retrieval processes of number “3”, “5” and “6”.

    图 7  不同物镜和散射介质间距对成像效果的影响 (a)—(f)不同间距下的散斑AC结果; (g)—(l)不同间距下的恢复结果

    Fig. 7.  Effects of different distance between objective and diffuser: (a)−(f) AC results of speckle pattern in different distance; (g)−(l) retrieval results in different distance.

    表 1  不同情形下算法迭代次数

    Table 1.  Interation times of algorithm in different conditions.

    AlgorithmPhysical
    contraint N
    Physical
    contraint $\beta$
    Interation
    times
    HIO&ER30$1: - 0.02:0$1560
    30$1: - 0.04:0$810
    30$1: - 0.05:0$660
    PP30$3: - 0.02:1$202
    30$3: - 0.05:1$82
    30$3: - 0.1:1$42
    下载: 导出CSV
  • [1]

    Ntziachristos V 2010 Nat. Meth. 7 603Google Scholar

    [2]

    Hoffman R M 2008 Methods Cell Biol. 85 485Google Scholar

    [3]

    Yang X, Pu Y, Psaltis D 2014 Opt. Express 22 3405Google Scholar

    [4]

    Kang S, Jeong S, Choi W, Ko H, Yang T D, Joo J H, Lee J S, Lim Y S, Park Q H, Choi W 2015 Nat. Photon. 9 253Google Scholar

    [5]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232Google Scholar

    [6]

    Wu T, Dong J, Shao X, Gigan S 2017 Opt. Express 25 27182Google Scholar

    [7]

    Sudarsanam S, Mathew J, Panigrahi S, Fade J, Alouini M, Ramachandran H 2016 Sci. Rep. 6 25033Google Scholar

    [8]

    Zhuang X W 2009 Nat. Photon. 3 436Google Scholar

    [9]

    Kolenderska S M, Katz O, Fink M, Gigan S 2015 Opt. Lett. 40 534Google Scholar

    [10]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [11]

    Katz O, Small E, Guan Y, Silberberg Y 2014 Optica 1 170Google Scholar

    [12]

    He G S 2002 Prog. Quantum Electron. 26 131Google Scholar

    [13]

    Lai P, Xu X, Liu H, Suzuki Y, Wang L V 2011 J. Biomed. Opt. 16 080505Google Scholar

    [14]

    Xu X, Liu H, Wang L V 2011 Nat. Photon. 5 154Google Scholar

    [15]

    Li X H, Deng C J, Chen M L, Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar

    [16]

    Devaux F, Huy K P, Denis S, Lantz E, Moreau P A 2017 J. Opt. 19 024001Google Scholar

    [17]

    Moreau P A, Toninelli E, Gregory T, Padgett M J 2018 Laser Photon. Rev. 12 1863Google Scholar

    [18]

    Takasaki K T, Fleischer J W 2014 Opt. Express 22 31426Google Scholar

    [19]

    Schott S, Bertolotti J, Leger J F, Bourdieu L, Gigan S 2015 Opt. Express 23 13505Google Scholar

    [20]

    Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558Google Scholar

    [21]

    Berto P, Rigneault H, Guillon M 2017 Opt. Lett. 42 5117Google Scholar

    [22]

    Osnabrugge G, Horstmeyer R, Papadopoulos I N, Judkewitz B, Vellekoop I M 2017 Optica 4 886Google Scholar

    [23]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photon. 8 784Google Scholar

    [24]

    Judkewitz B, Horstmeyer R, Vellekoop I M, Papadopoulos I N, Yang C 2015 Nat. Phys. 11 684Google Scholar

    [25]

    Amir P, Ravn A E, Hervé R, Dan O, Sylvain G, Ori K 2016 Opt. Express 24 16835Google Scholar

    [26]

    Wang W, Hu X, Liu J, Zhang S, Suo J, Situ G 2015 Opt. Express 23 28416Google Scholar

    [27]

    Thrane L, Yura H T, Andersen P E 2000 J. Opt. Soc. Am. A 17 484Google Scholar

    [28]

    Antipov S P, Bogdashov A A, Chirkov A V, Denisov G G 2003 Int. J. Infrared Millimeter waves 24 1677Google Scholar

    [29]

    范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才 2018 物理学报 67 094203Google Scholar

    Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A, Xu W, Cao L C 2018 Acta Phys. Sin. 67 094203Google Scholar

    [30]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [31]

    Michelle C, Haojiang Z E, Changhuei Y 2017 Opt. Express 25 3935Google Scholar

    [32]

    Shi Y, Liu Y, Wang J, Wu T 2017 Appl. Phys. Lett. 110 231101Google Scholar

    [33]

    Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866Google Scholar

  • [1] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [2] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [3] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [4] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [5] 陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋. 强散射过程与双随机相位加密过程的等价性分析. 物理学报, 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [6] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法. 物理学报, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [7] 迟静, 李小雷, 高大治, 王好忠, 王宁. 利用海浪噪声自相关实现散射体无源探测. 物理学报, 2017, 66(19): 194304. doi: 10.7498/aps.66.194304
    [8] 杜景林, 郑若钦, 谢立. WSANs中基于蜂巢结构的移动容错恢复算法. 物理学报, 2015, 64(1): 018901. doi: 10.7498/aps.64.018901
    [9] 张学智, 冯鸣, 张心正. 基于自相位调制效应的硅基中红外全光二极管. 物理学报, 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [10] 秦三团, 郭立新, 代少玉, 龚书喜. 二维随机粗糙面上导体目标复合瞬态散射的混合算法. 物理学报, 2011, 60(7): 074217. doi: 10.7498/aps.60.074217
    [11] 刘曼, 程传福, 宋洪胜, 滕树云, 刘桂媛. 高斯相关随机表面光散射散斑场相位奇异及其特性的理论研究. 物理学报, 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [12] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质. 物理学报, 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [13] 丁建勋, 黄海军, 唐铁桥. 一种考虑速度随机慢化概率动态演化的交通流元胞自动机模型. 物理学报, 2009, 58(11): 7591-7595. doi: 10.7498/aps.58.7591
    [14] 叶红霞, 金亚秋. 三维随机粗糙面上导体目标散射的解析-数值混合算法. 物理学报, 2008, 57(2): 839-846. doi: 10.7498/aps.57.839
    [15] 刘福民, 翟宏琛, 杨晓苹. 基于相息图迭代的随机相位加密. 物理学报, 2003, 52(10): 2462-2465. doi: 10.7498/aps.52.2462
    [16] 常梅, 金亚秋. 随机非球形粒子全极化散射的时间相关Mueller矩阵解. 物理学报, 2002, 51(1): 74-83. doi: 10.7498/aps.51.74
    [17] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究. 物理学报, 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
    [18] 程传福, 亓东平, 刘德丽, 滕树云. 高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析. 物理学报, 1999, 48(9): 1635-1643. doi: 10.7498/aps.48.1635
    [19] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应. 物理学报, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
    [20] 夏海瑞. 关于超Raman效应中散射强度的计算. 物理学报, 1989, 38(11): 1761-1770. doi: 10.7498/aps.38.1761
计量
  • 文章访问数:  6701
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-10-30
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回