-
本文将电磁表面(electromagnetic surface, EMS)的设计思想引入到微带天线阵的设计中, 在设计天线单元的同时, 也将其作为EMS单元兼顾其反射特性. 通过在矩形辐射贴片上开弧形缺口, 得到一种新的单元结构, 该单元可与原始EMS单元之间形成180° ± 30°有效相位差, 且作为天线单元时与原始天线工作在相同谐振模式、相同频带. 将两种单元以棋盘形式构成组合天线阵, 在两个极化下分别基于相位对消原理和吸波原理实现了雷达散射截面(radar cross section, RCS)减缩. 实测与仿真结果表明: 相较于等大小的金属板, 在x极化波照射下, 天线阵在5.6—6.0 GHz实现了6 dB以上的RCS减缩, 相对带宽为10.1%; 在y极化波照射下, 天线阵在5.0—7.2 GHz实现了6 dB以上的RCS减缩, 相对带宽为24%. 同时由于两种单元在辐射上具有较好的一致性, 使得组合天线阵的辐射性能得以保持. 该方法有效解决了天线阵辐射和散射难以兼顾的矛盾, 为其他形式的低散射天线阵的设计提供了新的方法与思路.In this paper, the idea of electromagnetic surface (EMS) is introduced into the design of microstrip antenna array. The antenna element proposed in this paper is treated as an EMS element, whose reflection characteristics are taken into consideration in the process of antenna array design. Firstly, a rectangular patch antenna element is designed. Then, by cutting arc-shaped structure into a rectangular patch, another element is created to generate 180° ± 30° effective phase difference compared with original antenna element. As a consequence, 180° ± 30° effective phase difference is obtained from 5.5 GHz to 6.9 GHz for the y-polarized incidence. Meanwhile, for the x-polarized incidence, each of the two elements possesses high absorptivity over the operating frequency as a result of matching load. Besides, the two elements work in the same resonant mode and the same resonant frequency band when treated as radiators. In order to further explain the consistency in radiation and difference in reflection between the two structures, current distribution at 5.8 GHz is investigated in terms of radiation and reflection. Then, the two elements are arranged into a chessboard array to achieve the low scattering performance based on phase cancellation principle under the y-polarized incidence. Based on the absorption principle, the matching load is added to improve the scattering performance of the composite antenna array with the x-polarized incidence. Simultaneously, the proposed antenna array maintains good radiation characteristics due to the consistency between the radiation performances of the two elements. The corresponding antenna array is fabricated and tested. Simulated and measured results prove that the proposed antenna array also achieves good radiation performance. And a 6 dB radar cross section reduction is obtained from 5.6 to 6.2 GHz under the x polarization and from 5.5 to 7.0 GHz under the y polarization for the normal incident wave, implying 10.1% and 24% in relative bandwidth, respectively. In-band reflection suppression in the specular direction is demonstrated for an incident angle of 30° under both polarizations. The measured results are in good agreement with the simulated ones. Additionally, the approach proposed in this paper offers an effective way to deal with the confliction between radiation and scattering performance, and can also be applied to other kinds of antenna arrays.
[1] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar
Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar
[2] Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar
[3] 姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162
Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162
[4] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[6] Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar
[7] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar
[8] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar
[9] Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar
[10] Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar
[11] Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar
[12] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar
[13] Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar
[14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar
[15] Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar
[16] Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar
[17] Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar
[18] Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar
[19] Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar
[20] Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar
[21] 孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282
Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282
[22] 李响 2017 硕士学位论文 (南京: 南京信息工程大学)
Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)
-
图 3 不同参数对EMS1反射特性的影响 (a) l1对反射幅度的影响; (b) l1对反射相位的影响; (c) s1对反射幅度的影响; (d) s1对反射相位的影响; (e) w1对反射幅度的影响; (f) w1对反射相位的影响
Fig. 3. Effects of various parameters on reflection performance: Effects of l1 on (a) reflection magnitude and (b) phase; effects of s1 on (c) reflection magnitude and (d) phase; effects of w1 on (e) reflection magnitude and (f) phase.
表 1 本文所设计的低散射微带天线阵与文献[17−20]中的对比
Table 1. Comparison between this work and other antenna arrays in Ref. [17−20].
阵列规模 阵元间隔/$\lambda $ 天线阵尺寸大小 天线阵相对带宽/% 带内RCS减缩量 RCS缩减相对带宽/% 文献[17] 2 × 2 0.69 1.38$\lambda $ × 1.38$\lambda $ 2.4 无减缩 122 文献[18] 2 × 2 0.64 2.40$\lambda $ × 2.40$\lambda $ 10.9 3 dB以上 126 文献[19] 2 × 2 0.60 3.65$\lambda $ × 3.65$\lambda $ 11.0 5 dB以上 93 文献[20] 2 × 2 0.90 1.80$\lambda $ × 1.80$\lambda $ 5.5 无减缩 69 本文 4 × 4 0.48 1.92$\lambda $ × 1.92$\lambda $ 6.9 6 dB以上 59 -
[1] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar
Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar
[2] Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar
[3] 姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162
Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162
[4] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[6] Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar
[7] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar
[8] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar
[9] Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar
[10] Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar
[11] Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar
[12] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar
[13] Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar
[14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar
[15] Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar
[16] Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar
[17] Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar
[18] Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar
[19] Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar
[20] Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar
[21] 孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282
Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282
[22] 李响 2017 硕士学位论文 (南京: 南京信息工程大学)
Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)
计量
- 文章访问数: 8708
- PDF下载量: 130
- 被引次数: 0