搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于幅相调控特性的双极化低散射超表面天线

吴天昊 杨欢欢 李桐 季轲峰 张芷昀 廖嘉伟 邹靖

引用本文:
Citation:

基于幅相调控特性的双极化低散射超表面天线

吴天昊, 杨欢欢, 李桐, 季轲峰, 张芷昀, 廖嘉伟, 邹靖

Dual-polarized Low-RCS metasurface antenna based on amplitude-phase modulation

WU Tianhao, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, LIAO Jiawei, ZOU Jing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 针对天线雷达散射截面(Radar Cross Section,RCS)减缩设计难度大、优化耗时长等问题,本文采用“先散射后辐射”的低RCS天线设计思路,并基于混合机制实现天线的双极化RCS减缩,提出了一种双极化低散射超表面天线,克服了传统低RCS天线设计方法存在的弊端。首先,基于超表面的幅相调控特性设计了一款双极化低RCS超表面,实现了对不同极化入射波的反射波束的独立调控;然后,在低RCS超表面的基础上,通过借鉴传统贴片天线辐射结构,对超表面结构进行局部调整并采用同轴馈电激励以实现天线辐射;最后,结合电流分布微调辐射结构,快速优化天线辐射性能。经过仿真和实验验证,提出的天线不仅具有良好的辐射性能,同时也能够实现带内带外双极化RCS减缩。与传统低RCS天线设计方法相比,本文采用的“先散射后辐射”逆向设计思路和提出的混合机制实现天线双极化RCS减缩的新方法,有效化解了超表面天线紧凑结构带来的辐射与低散射耦合矛盾,大大简化了低散射超表面天线的设计流程,且设计的天线采用单层介质实现RCS减缩,具有结构简单、紧凑、剖面低的特点。
    To address the challenges of the complex design process and long optimization time for antenna radar cross section (RCS) reduction, this paper adopts the "first scattering then radiation" low-RCS antenna design concept and implements dual-polarized RCS reduction of the antenna based on the hybrid mechanism. A dual-polarized low-scattering metasurface antenna is proposed, which overcomes the drawbacks of traditional low-RCS antenna design methods. Firstly, a dual-polarized low-RCS metasurface antenna is designed based on the amplitude and phase control characteristics of the metasurface, achieving independent control of the reflected beams for different polarized incident waves. Secondly, drawing on the radiation structure of traditional patch antennas. A local adjustment is made to the metasurface based on the low RCS metasurface. The antenna radiation is achieved through coaxial feed excitation. Finally, combined with the current distribution adjustment of the radiation structure, the antenna radiation performance is rapidly optimized.
    Through simulation and experimental verification, the proposed antenna not only has good radiation performance but also can achieve dual-polarized RCS reduction within and outside the band. Compared with the traditional low-RCS antenna design methods, the "first scattering then radiation" reverse design concept adopted in this paper and the new method of implementing dual-polarized RCS reduction of the antenna based on the hybrid mechanism effectively resolve the contradiction between radiation and low scattering caused by the compact structure of the metasurface antenna, greatly simplify the design process of the low-scattering metasurface antenna. The antenna uses a single-layer dielectric design to achieve RCS reduction, featuring a simple structure, compactness, and low profile.
  • [1]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nature Communications. 9 4334

    [2]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075

    [3]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96

    [4]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. 70 76

    [5]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T 2024 IEEE Antennas Wireless Propag. Lett. 23 2046

    [6]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microw. Antennas Propag. 12 1793

    [7]

    Ji K F, Cao X Y, Gao J, Yang H H, Li T, Jidi L Y 2022 IEEE Trans. Antennas Propag. 70 11537

    [8]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239

    [9]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y 2021 IEEE Trans. Antennas Propag. 69 3332

    [10]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Li T, Li S J 2024 IEEE Trans. Antennas Propag. 73 149

    [11]

    Ji K F, Zhou Y L, Yang H H, Li T, Li S J, Zhang Z Y 2025 IEEE Antennas Wireless Propag. Lett. (Early Access)

    [12]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Apllied Materials & Interfaces. 16 65635

    [13]

    Zhang Z Y, Li S J, Zhou Y L, Li T, Cong L L, Feng Q, Zhao X L, Cao X Y 2024 Optics Express. 32 24469

    [14]

    Jiang Y L, Tian Y X, Li J X, Yan C Y, Pan Y X 2024 IEEE Photonics Technology. Lett. 36 1117

    [15]

    Yue H, Chen L, Yang Y Z, He L X, Shi X W 2019 IEEE Antennas Wireless Propag. Lett. 18 54

    [16]

    Zhang T H, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wireless Propag. Lett. 22 665

    [17]

    Pu M B, Ma X L, Li X, Guo Y H, Luo X G 2017 J. Mater. Chem. C. 5 436

    [18]

    Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Optical Mater. 6 1800592

    [19]

    Huang Y J, Luo J, Pu M B, Guo Y H, Zhao Z Y, Ma X L, Li X, Luo X G 2019 Adv. Sci. 6 1801691

    [20]

    Xue J J, Jiang W, Gong S X 2017 International Journal of Antennas and Propagation. 2017 1260973

    [21]

    Li T, Yang H H, Li Q, Jiadi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325

    [22]

    Li T, Yang H H, Li Q, Liao J W, Gao K, Ji K F, Cao X Y 2024 Acta Phys. Sin. 73 124101 (in Chinese) [李桐、杨欢欢、李奇、廖嘉伟、高坤、季轲峰、曹祥玉 2024 物理学报 73 124101]

    [23]

    Rana S, Jain P 2023 International Journal of Microwave and Wireless Technologies. 15 1108

    [24]

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101 (in Chinese) [冯奎胜、李娜、杨欢欢 2021 物理学报 70 194101]

    [25]

    Liu Y, Jia Y T, Zhang W B, Wang Y Z, Guo S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199

    [26]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572

    [27]

    Sima B, Chen K, Luo X Y, Zhao J M, Feng Y J 2019 Phys. Rev. Appl.10 064043

    [28]

    Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag.68 1426

    [29]

    Yang Y J, Wang C C, Yang H L, Li S R, Zhou X F, Jin J 2024 IEEE Trans. Antennas Propag.72 6464

  • [1] 廖嘉伟, 杨欢欢, 李桐, 季轲峰, 吴天昊, 邹靖, 孙代飞, 张芷昀. 一种基于频率可重构的超宽带1比特相移超表面. 物理学报, doi: 10.7498/aps.74.20250636
    [2] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, doi: 10.7498/aps.73.20240142
    [3] 袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起. 幅相同调的吸波-对消雷达散射截面减缩超表面设计. 物理学报, doi: 10.7498/aps.71.20212174
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, doi: 10.7498/aps.71.20211254
    [5] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, doi: 10.7498/aps.70.20210746
    [6] 刘俊群. 天线方向系数的一类计算逼近方法. 物理学报, doi: 10.7498/aps.69.20191268
    [7] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, doi: 10.7498/aps.69.20200797
    [8] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, doi: 10.7498/aps.69.20200978
    [9] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, doi: 10.7498/aps.68.20182107
    [10] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, doi: 10.7498/aps.66.064203
    [11] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, doi: 10.7498/aps.64.224219
    [12] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, doi: 10.7498/aps.64.054101
    [13] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, doi: 10.7498/aps.64.094102
    [14] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, doi: 10.7498/aps.64.024219
    [15] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, doi: 10.7498/aps.63.224102
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, doi: 10.7498/aps.62.064103
    [17] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, doi: 10.7498/aps.61.208401
    [18] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, doi: 10.7498/aps.60.054104
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, doi: 10.7498/aps.58.919
    [20] 唐志军, 何怡刚. 无源射频识别系统中的雷达截面分析与计算. 物理学报, doi: 10.7498/aps.58.5126
计量
  • 文章访问数:  174
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回