搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于幅相调控特性的双极化低散射超表面天线

吴天昊 杨欢欢 李桐 季轲峰 张芷昀 廖嘉伟 邹靖

引用本文:
Citation:

基于幅相调控特性的双极化低散射超表面天线

吴天昊, 杨欢欢, 李桐, 季轲峰, 张芷昀, 廖嘉伟, 邹靖

Dual-polarized low-RCS metasurface antenna based on amplitude-phase modulation

WU Tianhao, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, LIAO Jiawei, ZOU Jing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对天线雷达散射截面(radar cross section, RCS)减缩设计难度大、优化耗时长等问题, 本文采用“先散射后辐射”的低RCS天线设计思路, 并基于混合机制实现天线的双极化RCS减缩, 提出了一种双极化低散射超表面天线, 克服了传统低RCS天线设计方法存在的弊端. 首先, 基于超表面的幅相调控特性设计了一款双极化低RCS超表面, 实现了对不同极化入射波的反射波束的独立调控; 然后, 在低RCS超表面的基础上, 通过借鉴传统贴片天线辐射结构, 对超表面结构进行局部调整并采用同轴馈电激励以实现天线辐射; 最后, 结合电流分布微调辐射结构, 快速优化天线辐射性能. 经过仿真和实验验证, 提出的天线不仅具有良好的辐射性能, 同时也能够实现带内带外双极化RCS减缩. 与传统低RCS天线设计方法相比, 本文采用的“先散射后辐射”逆向设计思路和提出的混合机制实现天线双极化RCS减缩的新方法, 有效化解了超表面天线紧凑结构带来的辐射与低散射耦合矛盾, 大大简化了低散射超表面天线的设计流程, 且设计的天线采用单层介质实现RCS减缩, 具有结构简单、紧凑、剖面低的特点.
    To address the challenges of the complex design process and long optimization time for antenna radar cross section (RCS) reduction, this paper adopts the low-RCS antenna design concept of “first scattering then radiation” and implements dual-polarized RCS reduction of the antenna based on the hybrid mechanism. A dual-polarized low-scattering metasurface antenna is proposed, which overcomes the drawbacks of traditional low-RCS antenna design methods. Firstly, a dual-polarized low-RCS metasurface antenna is designed based on the amplitude and phase control characteristics of the metasurface, achieving independent control of the reflected beams for different polarized incident waves. Secondly, drawing on the radiation structure of traditional patch antennas, a local adjustment is made to the metasurface based on the low RCS metasurface. The antenna radiation is achieved through coaxial feed excitation. Finally, combined with the current distribution adjustment of the radiation structure, the antenna radiation performance is rapidly optimized.Through simulation and experimental verification, the proposed antenna not only has good radiation performance but also can achieve the reduction of dual-polarized RCS reduction inside and outside the frequency band. Compared with the traditional low-RCS antenna design methods, the reverse design concept of “first scattering then radiation” adopted in this work and the new method of reducing the dual-polarized RCS reduction of the antenna based on a hybrid mechanism effectively resolve the contradiction between radiation and low scattering caused by the compact structure of the metasurface antenna, greatly simplifying the design process of the low-scattering metasurface antenna. The antenna adopts a single-layer dielectric design to achieve RCS reduction, and has the characteristics of simple structure, compactness, and low profile.
  • 图 1  超表面结构 (a) 单元透视图; (b) 表面俯视图; (c) 反射电磁波偏折原理

    Fig. 1.  Metasurface structure: (a) Perspective view; (b) top view; (c) the principle of refraction of electromagnetic waves.

    图 2  y极化相位调控性能 (a) 反射相位; (b) 表面单站RCS

    Fig. 2.  Phase control performance of y-polarization: (a) Reflection phase; (b) RCS of proposed surface.

    图 3  x极化表面单站RCS曲线 (a) Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm, R = 500 Ω; (b) Lx = 12.0 mm, Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm

    Fig. 3.  X-polarized RCS of proposed surface: (a) Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm, R = 500 Ω; (b) Lx = 12.0 mm, Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm.

    图 4  超表面散射方向图 (a) 金属板; (b) x极化; (c) y极化

    Fig. 4.  Scattering patterns of the metasurface: (a) Metal; (b) x polarization; (c) y polarization.

    图 5  超表面天线设计过程 (a) 超表面; (b) 参考天线; (c) 传统设计天线; (d) 天线1; (e)天线2

    Fig. 5.  Design process of metasurface antennas: (a) Metasurface; (b) reference antenna; (c) traditional antenna; (d) antenna 1; (e) antenna 2.

    图 6  辐射电流分布图 (a) 参考天线; (b) 天线1; (c) 天线2

    Fig. 6.  Radiation current distribution map: (a) Reference antenna; (b) antenna 1; (c) antenna 2.

    图 7  天线2辐射结构等效电路图 (a) 辐射贴片; (b) 寄生贴片

    Fig. 7.  Equivalent circuit diagram of the antenna 2 radiation structure: (a) Radiation patch; (b) parasitic patch.

    图 8  天线辐射性能 (a) 反射系数; (b) 增益. 6.8 GHz处三维辐射方向图 (c) 参考天线; (d) 传统设计天线; (e) 天线1; (f) 天线2

    Fig. 8.  Radiation performance comparison of the antennas: (a) Reflection coefficient; (b) gain; (c)–(f) 3D radiation patterns at 6.8 GHz; (c) reference antenna; (d) traditional antenna; (e) antenna 1; (f) antenna 2.

    图 9  天线RCS对比 (a) x极化; (b) y极化

    Fig. 9.  RCS comparison of the antennas: (a) x polarization; (b) y polarization.

    图 10  三维散射方向图 (a)—(f) 参考天线; (g)—(l)天线2

    Fig. 10.  Scattering patterns of the antennas: (a)–(f) Reference antenna; (g)–(l) antenna 2.

    图 11  散射电流分布对比 (a)—(c)超表面; (b)—(d)天线2

    Fig. 11.  Scattering current distribution comparison: (a)–(c) Metasurface; (b)–(d) antenna 2.

    图 12  实验测试 (a)天线样件; (b)测试环境

    Fig. 12.  Experiment: (a) Fabricated antenna; (b) test environment.

    图 13  天线2的实测与仿真辐射性能对比 (a) 反射系数; (b) 二维辐射方向图

    Fig. 13.  Comparison of measured and simulated radiation performance of antenna 2: (a) Reflection coefficient; (b) 2D radiation patterns.

    图 14  天线2的 RCS减缩曲线

    Fig. 14.  Monostatic RCS reduction of antenna 2.

    表 1  矩形贴片边长Ly取值与中心频率对应关系(Lx = 12.0 mm)

    Table 1.  Relationship between the side length Ly of the patch and the frequency(Lx = 12.0 mm).

    频率/GHz第一矩形贴片边长Ly1/mm第二矩形贴片边长Ly2/mm第三矩形贴片边长Ly3/mm第四矩形贴片边长Ly4/mm
    6.513.212.211.64.1
    7.511.910.59.63.8
    9.010.38.87.93.5
    下载: 导出CSV
  • [1]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nat. Commun. 9 4334Google Scholar

    [2]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [3]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [4]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. 70 76

    [5]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T 2024 IEEE Antennas Wireless Propag. Lett. 23 2046Google Scholar

    [6]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microw. Antennas Propag. 12 1793Google Scholar

    [7]

    Ji K F, Cao X Y, Gao J, Yang H H, Li T, Jidi L Y 2022 IEEE Trans. Antennas Propag. 70 11537Google Scholar

    [8]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [9]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y 2021 IEEE Trans. Antennas Propag. 69 3332Google Scholar

    [10]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Li T, Li S J 2024 IEEE Trans. Antennas Propag. 73 149

    [11]

    Ji K F, Zhou Y L, Yang H H, Li T, Li S J, Zhang Z Y 2025 IEEE Antennas Wireless Propag. Lett. 24 1302Google Scholar

    [12]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Apll. Mater. Interfaces 16 65635Google Scholar

    [13]

    Zhang Z Y, Li S J, Zhou Y L, Li T, Cong L L, Feng Q, Zhao X L, Cao X Y 2024 Opt. Express. 32 24469Google Scholar

    [14]

    Jiang Y L, Tian Y X, Li J X, Yan C Y, Pan Y X 2024 IEEE Photonics Technology. Lett. 36 1117Google Scholar

    [15]

    Yue H, Chen L, Yang Y Z, He L X, Shi X W 2019 IEEE Antennas Wireless Propag. Lett. 18 54Google Scholar

    [16]

    Zhang T H, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wireless Propag. Lett. 22 665Google Scholar

    [17]

    Pu M B, Ma X L, Li X, Guo Y H, Luo X G 2017 J. Mater. Chem. C 5 436

    [18]

    Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Opt. Mater. 6 1800592Google Scholar

    [19]

    Huang Y J, Luo J, Pu M B, Guo Y H, Zhao Z Y, Ma X L, Li X, Luo X G 2019 Adv. Sci. 6 1801691Google Scholar

    [20]

    Xue J J, Jiang W, Gong S X 2017 Int. J. Antennas Propag. 2017 1260973

    [21]

    Li T, Yang H H, Li Q, Jiadi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [22]

    李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉 2024 物理学报 73 124101Google Scholar

    Li T, Yang H H, Li Q, Liao J W, Gao K, Ji K F, Cao X Y 2024 Acta Phys. Sin. 73 124101Google Scholar

    [23]

    Rana S, Jain P 2023 Int. J. Microw. Wirel. Technol. 15 1108Google Scholar

    [24]

    冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Wang Y Z, Guo S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199Google Scholar

    [26]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572Google Scholar

    [27]

    Sima B, Chen K, Luo X Y, Zhao J M, Feng Y J 2019 Phys. Rev. Appl. 10 064043

    [28]

    Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar

    [29]

    Yang Y J, Wang C C, Yang H L, Li S R, Zhou X F, Jin J 2024 IEEE Trans. Antennas Propag. 72 6464Google Scholar

  • [1] 廖嘉伟, 杨欢欢, 李桐, 季轲峰, 张芷昀, 吴天昊, 邹靖, 孙代飞. 一种基于频率可重构的超宽带1比特相移超表面. 物理学报, doi: 10.7498/aps.74.20250636
    [2] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, doi: 10.7498/aps.73.20240142
    [3] 袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起. 幅相同调的吸波-对消雷达散射截面减缩超表面设计. 物理学报, doi: 10.7498/aps.71.20212174
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, doi: 10.7498/aps.71.20211254
    [5] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, doi: 10.7498/aps.70.20210746
    [6] 刘俊群. 天线方向系数的一类计算逼近方法. 物理学报, doi: 10.7498/aps.69.20191268
    [7] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, doi: 10.7498/aps.69.20200797
    [8] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, doi: 10.7498/aps.69.20200978
    [9] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, doi: 10.7498/aps.68.20182107
    [10] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, doi: 10.7498/aps.66.064203
    [11] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, doi: 10.7498/aps.64.224219
    [12] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, doi: 10.7498/aps.64.054101
    [13] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, doi: 10.7498/aps.64.094102
    [14] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, doi: 10.7498/aps.64.024219
    [15] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, doi: 10.7498/aps.63.224102
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, doi: 10.7498/aps.62.064103
    [17] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, doi: 10.7498/aps.61.208401
    [18] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, doi: 10.7498/aps.60.054104
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, doi: 10.7498/aps.58.919
    [20] 唐志军, 何怡刚. 无源射频识别系统中的雷达截面分析与计算. 物理学报, doi: 10.7498/aps.58.5126
计量
  • 文章访问数:  329
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-26
  • 修回日期:  2025-07-27
  • 上网日期:  2025-09-02

/

返回文章
返回