搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于频率可重构的超宽带1比特相移超表面

廖嘉伟 杨欢欢 李桐 季轲峰 吴天昊 邹靖 孙代飞 张芷昀

引用本文:
Citation:

一种基于频率可重构的超宽带1比特相移超表面

廖嘉伟, 杨欢欢, 李桐, 季轲峰, 吴天昊, 邹靖, 孙代飞, 张芷昀

An Ultra-wideband 1-Bit Phase-Shifting Metasurface Based on Frequency Reconfiguration

LIAO Jiawei, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, WU Tianhao, ZOU Jing, SUN Daifei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 提出了一种频率和相位复合可重构的超表面设计方法。该方法在超表面单元引入N个PIN二极管,借由其通断改变单元的谐振特性,形成2N个可调控的反射相位,选择适当的结构参数,可以使2N个反射相位在不同频带内呈现出180°相位差,综合利用频率和相位调控特性,即可有效扩展可重构相移超表面的工作带宽。采用该方法,设计了一款超宽带1比特相移超表面单元,其1比特相位的调控频段覆盖5.4GHz-13.0GHz,相对带宽为82.6%,通过引入集总电容和优化其位置,精准改变电流分布,实现了单元的低损耗性能。该单元的厚度仅为0.09λ,其具有低剖面、低成本、低损耗特点。进一步利用该单元构造了16×16单元的超表面,通过不同的阵列编码,超表面能够产生散射可控波束和轨道角动量(OAM)涡旋波,并在超宽带范围内实现了10dB以上的雷达散射截面(RCS)减缩效果,展现出动态灵活的波束调控和低散射性能。
    This paper presents a design method for frequency-phase composite reconfigurable metasurfaces. N PIN diodes are introduced into the metasurface unit. The on-off states of these PIN diodes regulate the resonance characteristics of the unit, constructing 2N switchable reflection phase states. After optimizing structural parameters, these reflection phase curves show 180° phase differences in different frequency bands. By leveraging frequency and phase regulation, the operational bandwidth of reconfigurable phase-shifting metasurfaces is effectively expanded. Based on this method, an ultra-wideband 1-bit phase-shifting metasurface unit is designed. Its 1-bit phase regulation band covers 5.4GHz–13.0 GHz, with a relative bandwidth of 82.6%. Lumped capacitors are introduced and their positions are optimized to precisely adjust current distribution, enabling low-loss performance of the unit. With a thickness of only 0.09λ, the unit features low profile, low cost, and low loss. A 16×16 unit array is further constructed. Through coding regulation, it generates scattering-controllable beams and orbital angular momentum (OAM) vortex waves. Experimental results show that the metasurface achieves over 10 dB radar cross section (RCS) reduction in the ultra-wideband range, demonstrating dynamic beam steering capability and high-efficiency low-scattering performance. This design provides new insights for applying reconfigurable metasurfaces in broadband communication, radar stealth, and intelligent electromagnetic environment regulation.
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep.-Rev. Sec. Phys. Lett. 634 1

    [3]

    Chen Q, Yang S L, Bai J J, Fu Y Q 2017 IEEE Trans. Antennas Propag. 65 4897

    [4]

    Xing Z Y, Yang F, Yang P, Yang J H 2022 IEEE Antennas Wirel. Propag. Lett. 21 1659

    [5]

    Li B, Liu X B, Shi H Y, Yang C, Chen Q, Zhang A X 2018 IEEE Access 6 78839

    [6]

    Huang C X, Zhang J J, Cheng Q, Cui T J 2021 Adv. Funct. Mater. 312103379

    [7]

    Xu J, Yang K X, Tian S, Zhao J P 2024 IEEE Antennas Wirel. Propag. Lett. 23 4658

    [8]

    Zhao S H, Zhang S, Xue H, Li Y C, Zhang K Y, Liu H X, Li L 2024IEEE Antennas Wirel. Propag. Lett. 23 985

    [9]

    Li Z H, Li S J, He C Y, Wu Y H, Hu L Q, Zhang Z Y, Li T, Yang H H 2024Adv. Phys. Res. 62400176

    [10]

    Xu P, Tian H W, Jiang W X, Chen Z Z, Cao T, Qiu C W, Cui T J 2021 Adv. Opt. Mater. 92100159

    [11]

    Yang H H, Li T, Liao J W, Gao K, Li Q, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 4069

    [12]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325

    [13]

    Yang H H, Li T, Jidi L, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075

    [14]

    Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161

    [15]

    Yang H H, Li T, Gao K, Guo Z X, Li Q, Li S J,, Cao X Y 2024Microwave Opt. Technol. Lett. 66 33965

    [16]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T, Liu X B, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 2046

    [17]

    Zhang Z Y, Cao X Y, Yang H H, Li T, Li S J, Ji K F 2023 J. Phys. D:Appl. Phys. 56015103

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014Light-Sci. Appl. 3e218

    [19]

    Pitilakis A, Seckel M, Tasolamprou A C, Liu F, Deltsidis A, Manessis D, Ostmann A, Kantartzis N V, Liaskos C, Soukoulis C M, Tretyakov S A, Kafesaki M, Tsilipakos O 2022Phys. Rev. Appl. 17064060

    [20]

    Yin T, Ren J, Chen Y J, Xu K D, Yin Y Z 2024 IEEE Trans. Antennas Propag. 72 6789

    [21]

    Li W H, Qiu T S, Wang J F, Zheng L, Jing Y, Jia Y X, Wang H, Han Y J, Qu S B 2021 IEEE Trans. Antennas Propag. 69 296

    [22]

    Wang P, Wang Y, Yan Z M, Zhou H C 2022 Chin. Phys. B 31124201

    [23]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F, Li T 2018 Opt. Mater. Express 8 3373

    [24]

    Wang H L, Zhang Y K, Cheng Y T, Zhang T Y, Zheng S, Cui T J, Ma H F 2025 Laser Photonics Rev.

    [25]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572

    [26]

    Cao W W, Zhang J W, Dai J Y, Wu L J, Yang H Q, Zhang Z, Li H D, Cheng Q 2025 Chin. Opt. Lett. 23023603

    [27]

    Zhou S G, Zhao G, Xu H, Luo C W, Sun J Q, Chen G T, Jiao Y C 2022IEEE Antennas Wirel. Propag. Lett. 21 566

    [28]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Cong L L, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206

    [29]

    Lu Y J, Cheng Q, Wang S R, Li H D, Dai J Y, Zhang Z, Luo J 2025Acta Opt. Sin. 2 0401001(in Chinese)[卢颖娟, 程强, 王思然, 李会东, 戴俊彦, 张珍, 罗将, 2025光学学报2 0401001]

    [30]

    Li P, Yu H, Su J X, Song L W, Guo Q X, Li Z R 2023 IEEE Trans. Antennas Propag. 71 621

    [31]

    Shi H Y, Liu R, Zhang Z Y, Chen X M, Wang L Y, Yi J J, Liu H W, Zhang A X 2024 IEEE Antennas Wirel. Propag. Lett. 23 4613

    [32]

    Lan C W, Gao Y T, Gao Z H, Wang H Y, Bi K, Lei M, Zhao G A 2025 Chin. Phys. Lett. 42056303

    [33]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Appl. Mater. Interfaces 1665635

    [34]

    Zheng Y J, Chen Q, Ding L, Yuan F, Fu Y Q 2023 J. Syst. Eng. Electron. 34 1473

    [35]

    Li Y X, Zhu R C, Sui S, Cui Y N, Jia Y X, Han Y J, Fu X M, Feng C Q, Qu S B, Wang J F 2025 Nanophotonics 14 959

    [36]

    Guo Q X, Hao F S, Qu M J, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 1241

    [37]

    Chen Q, Chen Y, Yuan F, Bai J J, Zheng Y J, Fu Y Q 2023Chin. J. Radio. Sci. 38 989

  • [1] 杨国, 施鸿强, 黎小聪, 肖如奇, 齐世山, 吴文. 大频率比的毫米波频率可重构滤波天线. 物理学报, doi: 10.7498/aps.74.20241494
    [2] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, doi: 10.7498/aps.73.20240142
    [3] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, doi: 10.7498/aps.73.20231365
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, doi: 10.7498/aps.71.20211254
    [5] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, doi: 10.7498/aps.70.20210746
    [6] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, doi: 10.7498/aps.69.20200978
    [7] 赵赞善, 李培丽. 基于半导体光纤环形腔激光器的全光广播式超宽带信号源. 物理学报, doi: 10.7498/aps.68.20182301
    [8] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, doi: 10.7498/aps.68.20181615
    [9] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, doi: 10.7498/aps.68.20190267
    [10] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, doi: 10.7498/aps.66.064203
    [11] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, doi: 10.7498/aps.64.024219
    [12] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, doi: 10.7498/aps.64.178101
    [13] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, doi: 10.7498/aps.63.194102
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, doi: 10.7498/aps.63.224102
    [15] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, doi: 10.7498/aps.62.244202
    [16] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, doi: 10.7498/aps.62.237801
    [17] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, doi: 10.7498/aps.62.064209
    [18] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, doi: 10.7498/aps.61.120502
    [19] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, doi: 10.7498/aps.59.3173
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, doi: 10.7498/aps.56.224
计量
  • 文章访问数:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回