搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于开口椭圆环的高效超宽带极化旋转超表面

余积宝 马华 王甲富 冯明德 李勇峰 屈绍波

引用本文:
Citation:

基于开口椭圆环的高效超宽带极化旋转超表面

余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波

High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators

Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo
PDF
导出引用
  • 电磁波的极化态在信号传输和灵敏度测量中有非常重要的应用价值. 本文设计、仿真并实验验证了微波频段基于开口椭圆环谐振器的极化旋转超表面. 理论上, 将多阶表面等离子谐振和高阻抗表面相结合, 解释了多谐振点、高效率极化旋转的物理机理. 数值上, 通过对结构参数的仿真分析, 给出了运用开口椭圆环结构设计多频段、超宽带高效极化旋转超表面的方法. 所设计和制作的超表面能够在相对带宽104.5%的频率范围内实现大于85%的极化旋转效率. 这些工作将为极化操控超表面的设计和应用提供重要帮助.
    Polarization state of electromagnetic waves plays a significant role in the fields of signal transmission and sensitive measurements. High-efficiently manipulating and controlling polarization state by two-dimensional flat metamaterials over a wider bandwidth has been turned into hot issues in recent years. A polarization conversion metasurface based on the split elliptical ring resonator is designed, simulated, and experimentally validated in the microwave regime. The proposed metasurface can convert a linear polarization state into its orthogonal one with a high efficiency for an ultra-wide band. Theoretically, the mechanism of polarization conversion is explained by the theoretical models of high-impedance surface and multi-plasmonic resonances. The metasurface has a strong anisotropy, which behaves as a high-impedance surface, and serves as a metal sheet in orthogonal orientation in the vicinity of the resonant frequencies. The reflection phase has a delay of π for one of the two electric field components and remains unchanged for the other. As a result, the polarization angle of the synthesized reflection electric field rotates by π/2. The fourth-order plasmonic resonances are generated by the electric and magnetic resonances, which contribute to the bandwidth expansion of cross-polarization reflection. Numerically, by means of simulation and analysis on the axial ratio and flare angle of the split elliptical ring resonators, the influences of these structure parameters on the bandwidth and efficiency of the polarization conversion are clarified. And then the design method of multi-peaks and wideband polarization conversion metasurfaces with split elliptic ring resonators is proposed for different kinds of applications. Experimentally, the geometry is implemented within the currently available printing circuit techniques, and a free space method is adopted to measure the scattering coefficients. A polarization conversion ratio of the fabricated sample is larger than 85% at a relative bandwidth of 104.5%, and approximately 100% of the polarization conversion ratio can be achieved around the resonant frequencies. Experimental results are in good consistency with the simulation results. Compared with the anterior polarization conversion metasurfaces, the proposed metasurface broadens the cross-polarization bandwidth greatly with little efficiency expenses. These works provide beneficial guidance for manipulating and controlling polarization states of electromagnetic waves, and have potential applications in modern radar and communication systems, signal detection systems, and sensitivity measurement systems, etc.
      通信作者: 马华, mahuar@163.com;qushaobo@mail.xjtu.edu.cn ; 屈绍波, mahuar@163.com;qushaobo@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61331005, 11204378)、博士后科学基金(批准号: 2014M552451)、全国优秀博士论文作者专项基金(批准号: 201242)和陕西省创新团队资助(批准号: 2014KCT-05)资助的课题.
      Corresponding author: Ma Hua, mahuar@163.com;qushaobo@mail.xjtu.edu.cn ; Qu Shao-Bo, mahuar@163.com;qushaobo@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378), the Postdoctoral Science Foundation of China (Grant No. 2014M552451), the Foundation of the Author of National Excellent Doctoral Dissertation of China (Grant No. 201242), and the Innovation Group Foundation of Shaanxi Province, China (Grant No. 2014KCT-05).
    [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Chen L T, Cheng Y Z, Nie Y, Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese) [陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203]

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [8]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [9]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [10]

    Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]

    [11]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [12]

    Hao J M, Qiu M, Zhou L 2010 Front. Phys. China 5 291

    [13]

    Chin J Y, Gollub J N, Mock J J, Liu R, Harrison C, Smith D R, Cui T J 2009 Opt. Express 17 7640

    [14]

    Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927

    [15]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304

    [16]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807

    [17]

    Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J, Zhu Y Y 2013 Phys. Rev. Lett. 110 207401

    [18]

    Lé esque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R, Pelouard J L 2014 Appl Phys Lett. 104 111105

    [19]

    Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Lett. 102 191905

    [20]

    Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T 2012 Phys. Rev. B 85 195131

    [21]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905

    [22]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [23]

    Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263

    [24]

    Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907

    [25]

    Han J, Li H Q, Fan Y C, Wei Z Y, Wu C, Cao Y, Yu X, Li F, Wang Z S 2011 Appl. Phys. Lett. 98 151908

    [26]

    Sievenpiper D, Zhang L, Broas R, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059

    [27]

    Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403

    [28]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508

    [29]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Huang X J, Xiao B X, Yang D, Yang H L 2015 Opt. Commun. 338 416

  • [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Chen L T, Cheng Y Z, Nie Y, Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese) [陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203]

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [8]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [9]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [10]

    Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]

    [11]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [12]

    Hao J M, Qiu M, Zhou L 2010 Front. Phys. China 5 291

    [13]

    Chin J Y, Gollub J N, Mock J J, Liu R, Harrison C, Smith D R, Cui T J 2009 Opt. Express 17 7640

    [14]

    Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927

    [15]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304

    [16]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807

    [17]

    Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J, Zhu Y Y 2013 Phys. Rev. Lett. 110 207401

    [18]

    Lé esque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R, Pelouard J L 2014 Appl Phys Lett. 104 111105

    [19]

    Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Lett. 102 191905

    [20]

    Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T 2012 Phys. Rev. B 85 195131

    [21]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905

    [22]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [23]

    Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263

    [24]

    Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907

    [25]

    Han J, Li H Q, Fan Y C, Wei Z Y, Wu C, Cao Y, Yu X, Li F, Wang Z S 2011 Appl. Phys. Lett. 98 151908

    [26]

    Sievenpiper D, Zhang L, Broas R, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059

    [27]

    Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403

    [28]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508

    [29]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Huang X J, Xiao B X, Yang D, Yang H L 2015 Opt. Commun. 338 416

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [6] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [7] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [10] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [11] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [12] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [13] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [15] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [16] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [17] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [18] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [19] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
计量
  • 文章访问数:  7792
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-09-05

/

返回文章
返回