搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计

李唐景 梁建刚 李海鹏 牛雪彬 刘亚峤

引用本文:
Citation:

基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计

李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤

Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface

Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao
PDF
导出引用
  • 基于线-圆极化转换原理和聚焦超表面相关理论,设计了一种反射型宽带线-圆极化转换聚焦超表面,并结合线极化馈源设计了宽带的高增益圆极化天线.首先,提出了一种单层的变形十字超表面单元,单元具有极化独立特性,并且能够在1014 GHz宽频带范围实现对反射波相位360范围全调控,同时利用该单元构建的一维超单元很好地验证了奇异反射现象.然后,分别控制单元横向和纵向尺寸的分布构建出同时满足线-圆极化转换和聚焦条件的双功能超表面.最后,采用Vivaldi天线作为馈源对超表面进行照射组成天线系统,仿真及测试结果均表明天线系统同时实现了高增益和线-圆极化转换,系统的-1 dB带宽为24%,-3 dB轴比带宽为29.8%.本文的设计充分体现了超表面对电磁波相位和极化操控的灵活性,具有显著的应用前景.
    A single-layer reflecting element is proposed based on the principle of linear-to-circular polarization conversion focusing metasurface, which can independently control the phases of x-polarized and y-polarized reflecting waves and operate in a broadband of 10-14 GHz. Following the generalized Snell's laws of reflection, a super cell is designed with a phase-gradient of -60 for x-polarized waves and 60 for y-polarized waves, and the simulation results show the well wideband anomalous reflection as expected. In the design of the multifunctional metasurface, the 1313 unit cells are used to satisfy the parabolic profile and the focal-distance-to-diameter ratio is set to be 0.5. The phase compensation for forming a constant aperture phase is provided by the individual reflected elements with different structure parameters and x-y=90 is used to realize polarization conversion. The designed sample is simulated in CST Microwave Studio and the results show that both of the x-polarized and y-polarized plane waves are well focused through the reflection of the focusing metasurface in a broadband of 10-14 GHz. Traditionally, multi-layer element is used to broaden phase coverage and bandwidth, the single-layer design in this paper greatly reduces the cost, processing difficulty and thickness of the lens. For further application, a linearly polarized Vivaldi antenna with a highest gain of 10 dB is located at the focal point of metasurface and the angle included between its polarization direction and x-axis is 45 in order to acquire right-handed circularly polarized reflecting wave. According to the reversibility principle of electromagnetic wave propagation, the spherical wave radiated by the feed antenna is converted into plane wave by the reflection of the focusing metasurface so that the antenna gain is remarkably enhanced. Simultaneously, the linearly polarized wave can be transformed into circularly polarized wave. Finally, the feed antenna and the metasurface are fabricated, assembled and measured. Numerical and experimental results are in good agreement with each other, which shows that the -1 dB gain bandwidth of the high-gain antenna is 24% (11-14 GHz) and the 3 dB axial ratio bandwidth is 29.8% (10-13.5 GHz). In addition, the gain at 12 GHz reaches a highest value of 19.6 dBic, and the aperture efficiency is more than 54%. The good performances indicate that the proposed broadband high-gain circularly polarized antenna has a well promising application in various communication systems. It is worth noting that the horizontally polarized, vertically polarized, right-handed circularly polarized and left-handed circularly polarized high-gain antenna can be realized with the rotation of feed antenna. In this case the idea is more versatile and valuable for designing the polarization reconfigurable antenna systems.
      通信作者: 李唐景, litangjing666@sina.com
    • 基金项目: 国家自然科学基金(批准号:61372034)资助的课题.
      Corresponding author: Li Tang-Jing, litangjing666@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [2]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李勇峰, 张介秋, 屈少波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 094101]

    [3]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629

    [4]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [5]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [6]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [7]

    Estakhri N M, Al A 2014 Phys. Rev. B 89 235419

    [8]

    Yu N F, Aieta F, Genevet P, Kats M, Gaburro Z, Capassp F 2012 Nano Lett. 12 6328

    [9]

    Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615

    [10]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717

    [11]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [12]

    Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407

    [14]

    Lei X, Chen G H, Zhao M Y, Zhang G Q 2014 J. Microwaves 30 37 (in Chinese) [雷雪, 陈国虎, 赵明洋, 张广求 2014 微波学报 30 37]

    [15]

    Zhao G, Jiao Y C, Zhang F, Zhang F S 2010 IEEE Antennas Wirel. Propag. Lett. 9 330

    [16]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [17]

    Saeidi C, Weide D 2015 Appl. Phys. Lett. 106 113110

    [18]

    Ahmadi F, Namiranian A, Virdee B 2015 Electromagnetics 35 93

    [19]

    Yu J B, Ma H, Wang J F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [20]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [21]

    Hu D, Moreno G, Wang X K, He J W, Chahadih A, Xie Z W, Wang B, Akalin T, Zhang Y 2014 Opt. Commun. 322 164

  • [1]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [2]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李勇峰, 张介秋, 屈少波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 094101]

    [3]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629

    [4]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [5]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [6]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [7]

    Estakhri N M, Al A 2014 Phys. Rev. B 89 235419

    [8]

    Yu N F, Aieta F, Genevet P, Kats M, Gaburro Z, Capassp F 2012 Nano Lett. 12 6328

    [9]

    Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615

    [10]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717

    [11]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [12]

    Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407

    [14]

    Lei X, Chen G H, Zhao M Y, Zhang G Q 2014 J. Microwaves 30 37 (in Chinese) [雷雪, 陈国虎, 赵明洋, 张广求 2014 微波学报 30 37]

    [15]

    Zhao G, Jiao Y C, Zhang F, Zhang F S 2010 IEEE Antennas Wirel. Propag. Lett. 9 330

    [16]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [17]

    Saeidi C, Weide D 2015 Appl. Phys. Lett. 106 113110

    [18]

    Ahmadi F, Namiranian A, Virdee B 2015 Electromagnetics 35 93

    [19]

    Yu J B, Ma H, Wang J F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [20]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [21]

    Hu D, Moreno G, Wang X K, He J W, Chahadih A, Xie Z W, Wang B, Akalin T, Zhang Y 2014 Opt. Commun. 322 164

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [6] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [7] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [8] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [9] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [11] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [12] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  4097
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-03-05

基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计

    基金项目: 国家自然科学基金(批准号:61372034)资助的课题.

摘要: 基于线-圆极化转换原理和聚焦超表面相关理论,设计了一种反射型宽带线-圆极化转换聚焦超表面,并结合线极化馈源设计了宽带的高增益圆极化天线.首先,提出了一种单层的变形十字超表面单元,单元具有极化独立特性,并且能够在1014 GHz宽频带范围实现对反射波相位360范围全调控,同时利用该单元构建的一维超单元很好地验证了奇异反射现象.然后,分别控制单元横向和纵向尺寸的分布构建出同时满足线-圆极化转换和聚焦条件的双功能超表面.最后,采用Vivaldi天线作为馈源对超表面进行照射组成天线系统,仿真及测试结果均表明天线系统同时实现了高增益和线-圆极化转换,系统的-1 dB带宽为24%,-3 dB轴比带宽为29.8%.本文的设计充分体现了超表面对电磁波相位和极化操控的灵活性,具有显著的应用前景.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回