搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反射超表面产生太赫兹涡旋波束

李晓楠 周璐 赵国忠

引用本文:
Citation:

基于反射超表面产生太赫兹涡旋波束

李晓楠, 周璐, 赵国忠

Terahertz vortex beam generation based on reflective metasurface

Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong
PDF
HTML
导出引用
  • 具有螺旋波前的电磁波是携带轨道角动量的涡旋波束, 涡旋波束存在的相位奇点, 使其在微粒操控和通讯等领域有特殊的应用. 本文提出了一种基于反射型超表面的太赫兹宽带涡旋波束产生器, 该器件由超表面-电介质-金属三层结构构成, 顶层为两个正交I形金属结构单元组成的超表面, 中间层是聚酰亚胺介质, 最底层为金属. 通过对超表面单元结构参数的优化设计, 可以实现在不同旋转角度下反射波振幅高达90%以上, 同时反射波相位随旋转角线性变化的目的. 进一步利用这些单元结构按照Pancharatnam-Berry相位原理进行超表面布阵, 在0.8—1.4 THz频率范围内, 可以将圆偏振太赫兹波束转换为具有轨道角动量的涡旋波束, 这一器件的工作带宽相对较宽, 结构简单, 转换效率高, 在太赫兹涡旋波束产生方面具有潜在的应用价值.
    The electromagnetic wave with spiral wavefront is a vortex beam carrying orbital angular momentum. The phase singularity of the vortex beam has special applications in the fields of particle manipulation and communication. In this paper, a terahertz (THz) wide-band vortex beam generator based on reflective metasurface is proposed and simulated. The device consists of a metasurface-dielectric-metal three-layer structure, and the top layer is a metasurface composed of two orthogonal I-shaped metal structural units. The intermediate layer of polyimide medium, and the bottom layer is of metal as a reflecting plate. The CST microwave studio is used to simulate the reflection performance of unit cell. The structure parameters are optimized to obtain the better performance. A set of optimed structure parameters is determined. According to the phase principle of Pancharatnam-Berry (P-B), by rotating the angle of the top-layer I-type metal structure, the reflection amplitudes of the unit cell structure at different rotation angles are required to approximately equal while the phase changes linearly with rotation angle and reaches a range of 2lπ for the topological charge number l. These cell structures are arranged according to the phase principle mentioned above. The metasurfaces of different topological charge numbers are designed to generate the corresponding vortex beams. In this paper, the metasurfaces with topological charge numbers 1 and 2 are designed. The reflection amplitude and phase of the circularly polarized THz beam incident vertically on the metasurface are simulated by using CST microwave studio. The simulation results show that in a frequency range of 0.8−1.4 THz, the metasurface can convert the circularly polarized terahertz beam into a vortex beam with a different topological charge number. In addition, in order to illustrate that the metasurface designed can produce a higher topological charge number of vortex beam, a metasurface with a topological charge number of 3 is designed as an example. The reflection amplitude and phase of the circularly polarized THz beam at a frequency of 1.1 THz is simulated. The results show that the designed metasurface can produce a vortex beam with a topological charge number of 3. The higher topological charges of vortex beam can also be generated according to the corresponding phase arrangement. The device has a relatively wide operating bandwidth, simple structure, high conversion efficiency, and has the potential application in terahertz vortex beam generation.
      通信作者: 赵国忠, guozhong-zhao@126.com
    • 基金项目: 国家自然科学基金(批准号: 5307625130)资助的课题
      Corresponding author: Zhao Guo-Zhong, guozhong-zhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 5307625130)
    [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar

    [2]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowsk R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [3]

    Janek M, Zich D, Naftaly M 2014 Mater. Chem. Phys. 145 278Google Scholar

    [4]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [5]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085Google Scholar

    [6]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [7]

    Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li C Y, Gu A, Shi N C, Zhao K, Zhan H L, Zhang C L 2015 Science China 58 124202Google Scholar

    [8]

    Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684Google Scholar

    [9]

    Kirilenko M S, Khonina S N 2013 Optical Memory and Neural Networks 22 81Google Scholar

    [10]

    Chavez-Cerda S, Padgett M J, Allison I, New G H C, Gutierrez-Vega J C, Neil A T O, Vicar I M, Courtial J 2002 J. Optics B: Quantum Semiclass Opt. 4 S52Google Scholar

    [11]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nature Comm. 3 1Google Scholar

    [12]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [13]

    Thide B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [14]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701

    [15]

    李永花, 周璐, 赵国忠 2018 中国激光 45 0314001Google Scholar

    Li Y H, Zhou L, Zhao G Z 2018 Chin. J. Lasers 45 0314001Google Scholar

    [16]

    Li H, Xiao B Y, Huang X J, Yang H L 2015 Phys. Scr. 90 1Google Scholar

    [17]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [18]

    Huang J, Pogorzelski R J 1998 IEEE Trans. Antenn. Propag. 46 650Google Scholar

    [19]

    Martynyuk A E, Martinez-Lopez J I, Martynyuk N A 2004 IEEE Trans. Antenn. Propag. 52 142Google Scholar

    [20]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701

    [21]

    Genevet P, Yu N F, Aieta F, Lin J, Kats M A, et al. 2012 Appl. Phys. Lett. 100 013101Google Scholar

    [22]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [23]

    Zhang K, Yuan Y Y, Zhang D W, Ding X M, Rstni B, Burokur S N, Lu M J, Tang J, Wu Q 2018 Opt. Express 26 1351Google Scholar

    [24]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

    [25]

    Xu H H, Wang G M, Cai T, Xiao J, Zhuang Y Q 2016 Opt. Express 24 27836Google Scholar

  • 图 1  超表面单元结构示意图 (a)顶视图; (b)侧视图

    Fig. 1.  Schematic diagram of the unit cell of metasurface: (a) Top view; (b) side view.

    图 2  线偏振光入射单元结构产生的反射相位和振幅谱 (a)相位谱; (b)振幅谱

    Fig. 2.  Reflected phase and amplitude spectrum produced by linearly polarized light incident unit call: (a) Phase; (b) amplitude.

    图 3  仿真得到的不同转角的相位和反射振幅

    Fig. 3.  The phase and reflection amplitude of different corners simulated.

    图 4  不同转角单元结构的反射相位和振幅谱 (a) LCP入射的相位谱; (b) RCP入射的相位谱; (c) LCP入射的振幅谱; (d) RCP入射的振幅谱

    Fig. 4.  Reflective phase and amplitude spectra of unit cell structure under different rotation angle: (a) Phase spectra at LCP incident; (b) phase spectra at RCP incident; (c) amplitude spectra at LCP incident; (d) amplitude spectra at RCP incident.

    图 5  两种用于产生拓扑荷数分别为 (a) l = 1和(b) l = 2的涡旋波束超表面结构

    Fig. 5.  Two kinds of metasurface structures for generating the vortex beam with topological charge numbers (a) l = 1 and (b) l = 2.

    图 6  超表面产生l = 1和l = 2的涡旋波束反射振幅和相位分布 LCP入射l = 1超表面的(a)振幅分布和(b)相位分布; RCP入射l = 2超表面的(c)振幅分布和(d)相位分布

    Fig. 6.  Reflective amplitude and phase distributions of vortex beams with l = 1 and l = 2 generated by metasurface. LCP incident l = 1 metasurface: (a) amplitude distribution and (b) phase distribution; RCP incident l = 2 metasurface: (c) amplitude distribution and (d) phase distribution.

    图 7  不同频率下l = 1和l = 3超表面产生的反射涡旋波束振幅、相位分布 l = 1超表面(a) 0.8 THz频率下振幅分布, (b) 0.8 THz频率下相位分布, (c) 1.4 THz频率下振幅分布, (d) 1.4 THz频率下相位分布; l = 3超表面(e) 1.1 THz频率下振幅分布, (f) 1.1 THz频率下相位分布

    Fig. 7.  The amplitude and phase distribution of reflective vortex beam generated by the LCP incident l = 1 and l = 3 metasurface at different frequencies. l = 1: (a) amplitude distribution at 0.8 THz, (b) phase distribution at 0.8 THz, (c) amplitude distribution at 1.4 THz, (d) phase distribution at 1.4 THz. l = 3: (e) amplitude distribution at 1.1 THz, (f) phase distribution at 1.1 THz.

  • [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar

    [2]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowsk R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [3]

    Janek M, Zich D, Naftaly M 2014 Mater. Chem. Phys. 145 278Google Scholar

    [4]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [5]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085Google Scholar

    [6]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [7]

    Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li C Y, Gu A, Shi N C, Zhao K, Zhan H L, Zhang C L 2015 Science China 58 124202Google Scholar

    [8]

    Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684Google Scholar

    [9]

    Kirilenko M S, Khonina S N 2013 Optical Memory and Neural Networks 22 81Google Scholar

    [10]

    Chavez-Cerda S, Padgett M J, Allison I, New G H C, Gutierrez-Vega J C, Neil A T O, Vicar I M, Courtial J 2002 J. Optics B: Quantum Semiclass Opt. 4 S52Google Scholar

    [11]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nature Comm. 3 1Google Scholar

    [12]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [13]

    Thide B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [14]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701

    [15]

    李永花, 周璐, 赵国忠 2018 中国激光 45 0314001Google Scholar

    Li Y H, Zhou L, Zhao G Z 2018 Chin. J. Lasers 45 0314001Google Scholar

    [16]

    Li H, Xiao B Y, Huang X J, Yang H L 2015 Phys. Scr. 90 1Google Scholar

    [17]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [18]

    Huang J, Pogorzelski R J 1998 IEEE Trans. Antenn. Propag. 46 650Google Scholar

    [19]

    Martynyuk A E, Martinez-Lopez J I, Martynyuk N A 2004 IEEE Trans. Antenn. Propag. 52 142Google Scholar

    [20]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701

    [21]

    Genevet P, Yu N F, Aieta F, Lin J, Kats M A, et al. 2012 Appl. Phys. Lett. 100 013101Google Scholar

    [22]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [23]

    Zhang K, Yuan Y Y, Zhang D W, Ding X M, Rstni B, Burokur S N, Lu M J, Tang J, Wu Q 2018 Opt. Express 26 1351Google Scholar

    [24]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

    [25]

    Xu H H, Wang G M, Cai T, Xiao J, Zhuang Y Q 2016 Opt. Express 24 27836Google Scholar

  • [1] 张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨. 基于超表面的太赫兹与中长波红外高效分光器件. 物理学报, 2024, 73(19): 197801. doi: 10.7498/aps.73.20241066
    [2] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [5] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [6] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [7] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [8] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [11] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [15] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [16] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [17] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [19] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件. 物理学报, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  13488
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-10
  • 修回日期:  2019-08-28
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回