搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米印刷技术的双螺旋太赫兹可调超表面

于博 庄书磊 王正心 王曼诗 郭兰军 李鑫煜 郭文瑞 苏文明 龚诚 刘伟伟

引用本文:
Citation:

基于纳米印刷技术的双螺旋太赫兹可调超表面

于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟

Nano-printing technology based double-spiral terahertz tunable metasurface

Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei
PDF
HTML
导出引用
  • 由人工构造超表面所制成的电磁器件能够实现太赫兹频段的滤波、调控、传感、探测等功能, 对太赫兹波在通信、成像领域的应用至关重要. 基于纳米印刷技术设计制备了一种柔性透明双螺旋超表面, 并利用该超表面构建了一款太赫兹旋转可调滤波器, 通过旋转超表面实现太赫兹波透射率的有规律调谐. 在旋转90°后, 0.52 THz处的透射率由8%增至67%, 而0.92 THz处的透射率由68%降至3%, 实现调制深度大于88%的主动调控. 并且, 所提出的纳米印刷超表面具有超薄、柔性、可见光透明的优良性质, 有利于太赫兹可调器件的小型化、轻量化及大面积制备.
    Electromagnetic devices made of artificially constructed metasurfaces can achieve filtering, modulation, sensing, and detection functions in the terahertz frequency band, which is essential for the applications of terahertz waves in the fields of communication and imaging. We design and prepare a flexible and transparent double spiral metasurface based on nano-printing technology, and use the metasurface to construct a rotating tunable filter, which can achieve regular tuning of the terahertz wave transmittance by rotating the metasurface. After rotating 90°, the transmittance at 0.52 THz increases from 8% to 67%, and the transmittance at 0.92 THz decreases from 68% to 3%, thus realizing active tuning with modulation depth greater than 88%. Moreover, the proposed nano-printing metasurfaces have excellent properties of ultra-thinness, flexibility, and visible light transparency, which are conducive to the miniaturization, light-weight and large-area preparation of terahertz tunable devices.
      通信作者: 苏文明, wmsu2008@sinano.ac.cn ; 龚诚, gongcheng@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0504400)资助的课题.
      Corresponding author: Su Wen-Ming, wmsu2008@sinano.ac.cn ; Gong Cheng, gongcheng@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2018YFB0504400)
    [1]

    张振伟, 崔伟丽, 张岩, 张存林 2006 红外与毫米波学报 25 217Google Scholar

    Zhang Z W, Cui W L, Zhang Y, Zhang C L 2006 J. Infrared Millim. Waves 25 217Google Scholar

    [2]

    Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N 2012 Electron. Lett. 48 953Google Scholar

    [3]

    Harter T, Fullner C, Kwmal J N, Ummethala S, Steinmann J L, Brosi M, Hesler J L, Brundermann E, Muller A S, Freude W 2020 Nat. Photonics 14 601Google Scholar

    [4]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [5]

    Lu M H, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J. Appl. Phys. 100 103

    [6]

    Li Q, Zhou Y, Yang Y F, Chen G H 2016 J. Opt. Soc. Am. A 33 637

    [7]

    Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 418Google Scholar

    [8]

    Yan B, Wang Z G, Zhan X, Lin L, Wang X L, Gong C, Liu W W 2020 Sci. Rep. 10 20876Google Scholar

    [9]

    Yu T, Zuo X, Liu W W, Gong C 2020 Opt. Commun. 459 124896Google Scholar

    [10]

    李帅, 张岩, 高翔, 占涛, 赵得龙, 龚诚, 刘伟伟 2019 红外与毫米波学报 38 68Google Scholar

    Li S, Zhang Y, Gao X, Zhan T, Zhao D L, Gong C, Liu W W 2019 J. Infrared Millim. Waves 38 68Google Scholar

    [11]

    Gong C, Zhan M Z, Yang J, Wang Z G, Liu H T, Zhao Y J, Liu W W 2016 Sci. Rep. 6 32466Google Scholar

    [12]

    Wang H, Yan B, Jin H Z, Wang Z G, Guo L J, Li B Y, Yu B, Gong C 2021 J. Phys. D: Appl. Phys. 54 225105Google Scholar

    [13]

    Arbabi A, Horie Y, Ball A J, Bagheri M B, Faraon A 2015 Nat. Commun. 6 7069Google Scholar

    [14]

    Xing T L, Bai T R, Tang Y, Lu Z Y, Huang Y L, Balmakou A, Wang J C 2020 Opt. Express 28 20334Google Scholar

    [15]

    Wang Z G, Jin H Z, Sun X F, Li X, Xu Y, Liu G, Gong C 2020 Opt. Commun. 474 126172Google Scholar

    [16]

    Yan B, Yu B, Xu J F, Li Y K, Wang Z G, Wang Z X, Yu B, Ma H Y, Gong C 2021 J. Phys. D: Appl. Phys. 54 465102Google Scholar

    [17]

    Yachin V, Ivzhenko L, Polevoy S, Tarapov S 2016 Appl. Phys. Lett. 109 221905Google Scholar

    [18]

    Kumar P P, Sreelakshmi K, Sangeetha B, Narayan S 2017 International Conference on Communication and Signal Processing Melmaruvathur, Inida, February 8–10, 2017 p2081

    [19]

    Chen H, Lu W B, Liu Z G, Zhang J, Huang B H 2017 IEEE Trans. Antennas Propag. 65 7383Google Scholar

    [20]

    Sun H Y, Li Z, Gu C Q, Xu Q, Chen X L, Sun Y H, Lu S C, Martin F 2018 Sci. Rep. 8 076401

    [21]

    Guo X X, Goussev V, Tournat V, Paulson J A 2019 Phys. Rev. E 99 052209Google Scholar

    [22]

    程进, 周顺, 孙雪平, 蒲欣欣, 孙其梁, 徐英舜, 刘卫国 2020 光子学报 49 0724001Google Scholar

    Cheng J, Zhou S, Sun X P, Pu X X, Sun Q L, Xu Y S, Liu W G 2020 ACTA Photonica Sin. 49 0724001Google Scholar

    [23]

    于洋, 肿帆, 江西, 褚琼琼, 祝世宁, 刘辉 2021 中国光学 14 927Google Scholar

    Yu Y, Zhong F, Jiang X, Chu Q Q Zhu S N, Liu H 2021 Chin. Opt. Lett. 14 927Google Scholar

    [24]

    夏雨, 王毅, 曹群生 2021 微波学报 37 68

    Xia Y, Wang Y, Cao Q S. 2021 J. Microwaves 37 68

    [25]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [26]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1

    [27]

    Dai Z J, Su Q, Wang Y F, Qi P F, Wang X L, Liu W W 2019 Laser Phys. 29 065301Google Scholar

    [28]

    孟磊, 徐娜 2014 吉林化工学院学报 31 75Google Scholar

    Meng L, Xu N 2014 J. Jilin Ins. Chem. Technol. 31 75Google Scholar

    [29]

    柏林, 张信歌, 蒋卫祥, 崔铁军 2021 雷达学报 10 240Google Scholar

    Bai L, Zhang X G, Jiang W X, Cui T J 2021 J. Radars 10 240Google Scholar

    [30]

    Wang J, Wang X C, Gao X, Ning R X 2021 J. Measure. Sci. Instru. 12 362

    [31]

    Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308Google Scholar

    [32]

    李国华 2010 博士学位论文 (长沙: 国防科技大学)

    Li G H 2010 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [33]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 物理学报 68 095201Google Scholar

    Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [34]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 0036617Google Scholar

  • 图 1  纳米银印刷超表面 (a) 制备过程; (b) 样品

    Fig. 1.  Nano-printing metasurface: (a) Preparation process; (b) sample.

    图 2  双螺旋结构与旋转可调滤波器 (a) 3×3单元阵列示意图; (b) 单元尺寸; (c)滤波器示意图; (d) 滤波器实物图

    Fig. 2.  Double-spiral structure and rotating tunable filter: (a) 3×3 cell array; (b) cell size; (c) schematic diagram of the filter; (d) picture of the filter.

    图 3  旋转仿真结果 (a) 0°—90°; (b) 0°与90°

    Fig. 3.  The simulation results of rotations: (a) 0°–90°; (b) 0° and 90°

    图 4  偏振仿真结果 (a) 透射系数; (b)偏振转化率

    Fig. 4.  The simulation results of polarization: (a) Transmission coefficient; (b) polarization conversion efficiency.

    图 5  螺旋结构圆二色性 (a) 0°; (b) 90°; (c) 单螺旋

    Fig. 5.  Circular dichroism of spiral structure: (a) 0°; (b) 90°; (c) single spiral

    图 6  THz-TDS系统验证旋转可调滤波器示意图

    Fig. 6.  Schematic diagram of verifying the rotating tunable filter by THz-TDS.

    图 7  THz-TDS系统测量结果 (a) 0°—90°; (b) 0°与90°

    Fig. 7.  THz-TDS system measurement results: (a) 0°–90°; (b) 0° and 90°.

    图 8  超表面的S参数 (a) 0°; (b) 90°

    Fig. 8.  S parameter of the metasurface: (a) 0°; (b) 90°.

    图 9  超表面的等效阻抗 (a) 0°; (b) 90°

    Fig. 9.  Equivalent impedance of the metasurface: (a) 0°; (b) 90°.

  • [1]

    张振伟, 崔伟丽, 张岩, 张存林 2006 红外与毫米波学报 25 217Google Scholar

    Zhang Z W, Cui W L, Zhang Y, Zhang C L 2006 J. Infrared Millim. Waves 25 217Google Scholar

    [2]

    Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N 2012 Electron. Lett. 48 953Google Scholar

    [3]

    Harter T, Fullner C, Kwmal J N, Ummethala S, Steinmann J L, Brosi M, Hesler J L, Brundermann E, Muller A S, Freude W 2020 Nat. Photonics 14 601Google Scholar

    [4]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [5]

    Lu M H, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J. Appl. Phys. 100 103

    [6]

    Li Q, Zhou Y, Yang Y F, Chen G H 2016 J. Opt. Soc. Am. A 33 637

    [7]

    Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 418Google Scholar

    [8]

    Yan B, Wang Z G, Zhan X, Lin L, Wang X L, Gong C, Liu W W 2020 Sci. Rep. 10 20876Google Scholar

    [9]

    Yu T, Zuo X, Liu W W, Gong C 2020 Opt. Commun. 459 124896Google Scholar

    [10]

    李帅, 张岩, 高翔, 占涛, 赵得龙, 龚诚, 刘伟伟 2019 红外与毫米波学报 38 68Google Scholar

    Li S, Zhang Y, Gao X, Zhan T, Zhao D L, Gong C, Liu W W 2019 J. Infrared Millim. Waves 38 68Google Scholar

    [11]

    Gong C, Zhan M Z, Yang J, Wang Z G, Liu H T, Zhao Y J, Liu W W 2016 Sci. Rep. 6 32466Google Scholar

    [12]

    Wang H, Yan B, Jin H Z, Wang Z G, Guo L J, Li B Y, Yu B, Gong C 2021 J. Phys. D: Appl. Phys. 54 225105Google Scholar

    [13]

    Arbabi A, Horie Y, Ball A J, Bagheri M B, Faraon A 2015 Nat. Commun. 6 7069Google Scholar

    [14]

    Xing T L, Bai T R, Tang Y, Lu Z Y, Huang Y L, Balmakou A, Wang J C 2020 Opt. Express 28 20334Google Scholar

    [15]

    Wang Z G, Jin H Z, Sun X F, Li X, Xu Y, Liu G, Gong C 2020 Opt. Commun. 474 126172Google Scholar

    [16]

    Yan B, Yu B, Xu J F, Li Y K, Wang Z G, Wang Z X, Yu B, Ma H Y, Gong C 2021 J. Phys. D: Appl. Phys. 54 465102Google Scholar

    [17]

    Yachin V, Ivzhenko L, Polevoy S, Tarapov S 2016 Appl. Phys. Lett. 109 221905Google Scholar

    [18]

    Kumar P P, Sreelakshmi K, Sangeetha B, Narayan S 2017 International Conference on Communication and Signal Processing Melmaruvathur, Inida, February 8–10, 2017 p2081

    [19]

    Chen H, Lu W B, Liu Z G, Zhang J, Huang B H 2017 IEEE Trans. Antennas Propag. 65 7383Google Scholar

    [20]

    Sun H Y, Li Z, Gu C Q, Xu Q, Chen X L, Sun Y H, Lu S C, Martin F 2018 Sci. Rep. 8 076401

    [21]

    Guo X X, Goussev V, Tournat V, Paulson J A 2019 Phys. Rev. E 99 052209Google Scholar

    [22]

    程进, 周顺, 孙雪平, 蒲欣欣, 孙其梁, 徐英舜, 刘卫国 2020 光子学报 49 0724001Google Scholar

    Cheng J, Zhou S, Sun X P, Pu X X, Sun Q L, Xu Y S, Liu W G 2020 ACTA Photonica Sin. 49 0724001Google Scholar

    [23]

    于洋, 肿帆, 江西, 褚琼琼, 祝世宁, 刘辉 2021 中国光学 14 927Google Scholar

    Yu Y, Zhong F, Jiang X, Chu Q Q Zhu S N, Liu H 2021 Chin. Opt. Lett. 14 927Google Scholar

    [24]

    夏雨, 王毅, 曹群生 2021 微波学报 37 68

    Xia Y, Wang Y, Cao Q S. 2021 J. Microwaves 37 68

    [25]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [26]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1

    [27]

    Dai Z J, Su Q, Wang Y F, Qi P F, Wang X L, Liu W W 2019 Laser Phys. 29 065301Google Scholar

    [28]

    孟磊, 徐娜 2014 吉林化工学院学报 31 75Google Scholar

    Meng L, Xu N 2014 J. Jilin Ins. Chem. Technol. 31 75Google Scholar

    [29]

    柏林, 张信歌, 蒋卫祥, 崔铁军 2021 雷达学报 10 240Google Scholar

    Bai L, Zhang X G, Jiang W X, Cui T J 2021 J. Radars 10 240Google Scholar

    [30]

    Wang J, Wang X C, Gao X, Ning R X 2021 J. Measure. Sci. Instru. 12 362

    [31]

    Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308Google Scholar

    [32]

    李国华 2010 博士学位论文 (长沙: 国防科技大学)

    Li G H 2010 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [33]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 物理学报 68 095201Google Scholar

    Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [34]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 0036617Google Scholar

  • [1] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强. 物理学报, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [2] 张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨. 基于超表面的太赫兹与中长波红外高效分光器件. 物理学报, 2024, 73(19): 197801. doi: 10.7498/aps.73.20241066
    [3] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [4] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [5] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [6] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [7] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [8] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [9] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [10] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [11] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [12] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [13] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [14] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [19] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [20] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
计量
  • 文章访问数:  5165
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-02-09
  • 上网日期:  2022-03-09
  • 刊出日期:  2022-06-05

/

返回文章
返回