搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹表面极化激元

张学进 陆延青 陈延峰 朱永元 祝世宁

引用本文:
Citation:

太赫兹表面极化激元

张学进, 陆延青, 陈延峰, 朱永元, 祝世宁

Terahertz surface polaritons

Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning
PDF
导出引用
  • 作为束缚于表面或界面的电磁波与极性元激发的耦合模量子,表面极化激元是克服衍射极限的核心物理.在紫外、可见以及近红外波段,表面等离子极化激元展现出了亚波长特性,具有高分辨成像等应用,并发展成为表面等离子极化激元亚波长光学学科;在中红外波段,表面声子极化激元发挥着同样的作用.太赫兹波段曾是人类认识的空白区域,近三十年来得以高速发展,其战略意义重大.具有克服衍射极限能力的太赫兹表面极化激元同样是小型化与集成化太赫兹器件,以及太赫兹超高分辨成像的重要物理基础.近几年来,对以石墨烯为代表的二维材料的研究突飞猛进,诞生了石墨烯表面等离子极化激元亚波长光学这门学科,并贡献于太赫兹领域.本文对可在太赫兹波段工作的人工超构材料、掺杂半导体、二维电子气、二维材料、拓扑绝缘体等结构材料的表面极化激元进行了较为全面的总结与介绍,为研制克服衍射极限的太赫兹集成光子学器件提供可资借鉴的物理基础.
    Enormous efforts have been made to manipulate the light-matter interactions, especially in sub-diffraction-limited space, leading to miniaturized and integrated photonic devices. In physics, an elementary excitation, called polariton, which is the quantum of the coupled photon and polar elementary excitation wave field, underlies the light-matter interaction. In the dispersion relation, polaritons behave as anti-crossing interacting resonance. Surface polaritons provide ultra-confinement of electromagnetic field at the interface, opening up possibilities for sub-diffraction-limited devices, and various field enhancement effects. In the electromagnetic spectra, terahertz (THz) regime was called THz gap before the 1990s, but has now been thrust into the limelight with great significance. This review is devoted to the emerging but rapidly developing field of sub-diffraction-limited THz photonics, with an emphasis on the materials and the physics of surface polaritons. A large breadth of different flavours of materials and surface polaritonic modes have been summarized. The former includes metallic, dielectric, semiconductor, two-dimensional (2D) materials, metamaterials, etc.; the latter covers surface phonon-, plasmon-, and hybrid polaritons. In the THz regime, 2D surface plasmon polariton and artificial surface phonon polaritons offer more attractive advantages in ability to obtain low-loss, tunable, ultracompact light-matter modes.
      通信作者: 张学进, xuejinzh@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0303700)和国家自然科学基金(批准号:11621091,11374150,11274159)资助的课题.
      Corresponding author: Zhang Xue-Jin, xuejinzh@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303700) and the National Natural Science Foundation of China (Grant Nos. 11621091, 11374150, 11274159).
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [3]

    Soref R 2010 Nat. Photon. 4 495

    [4]

    Mittleman D 2003 Sensing with Terahertz Radiation (Berlin: Springer)

    [5]

    Sakai K 2005 Terahertz Optoelectronics (Berlin: Springer)

    [6]

    Lee Y S 2009 Principles of Terahertz Science and Technology (Berlin: Springer)

    [7]

    Zhang X C, Xu J 2010 Introduction to THz Wave Photonics (Berlin: Springer)

    [8]

    Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001

    [9]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [10]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [11]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667

    [12]

    Nie S, Emory S R 1997 Science 275 1101

    [13]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [14]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou, J G 2013 Nature 498 82

    [15]

    Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U K, DenBaars S P 1999 Phys. Rev. B 60 11564

    [16]

    Okamoto K, NiKi I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nat. Mater. 3 601

    [17]

    Pompa P P, Martiradonna L, Della Torre A, Della Sala F, Manna L, de Vittorio M, Calabi F, Cingolani R, Rinaldi R 2006 Nat. Nanotech. 1 126

    [18]

    Shimizu K T, Woo W K, Fisher B R, Eisler H J, Bawendi M G 2002 Phys. Rev. Lett. 89 117401

    [19]

    Zhang X J, Wang P W, Zhang X Z, Xu J, Zhu Y Y, Yu D P 2009 Nano Res. 2 47

    [20]

    Zhang X J, Tang H, Huang J A, Luo L B, Zapien J A, Lee S T 2011 Nano Lett. 11 4626

    [21]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459

    [22]

    Jiang J J, Xu F, Xie Y B, Tang X M, Liu Z Y, Zhang X J, Zhu Y Y 2013 Opt. Lett. 38 4570

    [23]

    Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W, Wee A T S 2016 Nat. Commun. 7 11283

    [24]

    Genevet P, Tetienne J P, Gatzogiannis E, Blanchard R, Kats M A, Scully M O, Capasso F 2010 Nano Lett. 10 4880

    [25]

    Cai W, Vasudev A P, Brongersma M L 2011 Science 333 1720

    [26]

    Valev V K 2012 Langmuir 28 15454

    [27]

    Grosse N B, Heckmann J, Woggon U 2012 Phys. Rev. Lett. 108 136802

    [28]

    Li G, Zhang S, Zengtgraf T 2017 Nat. Rev. Mater. 2 17010

    [29]

    Ebbesen T W, Lezec H J, Chaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [30]

    Andrew P, Barnes W L 2004 Science 306 1002

    [31]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205

    [32]

    Aubry A, Lei D Y, Fernandez Dominguez A I, Sonnefraud Y, Maier S A, Pendry J B 2010 Nano Lett. 10 2574

    [33]

    Mooney J M, Silverman J 1985 IEEE Trans. Electron. Dev. 32 33

    [34]

    Clavero C 2014 Nat. Photon. 8 95

    [35]

    Sobhani A, Knight M W, Wang Y, Brown L V, Fang Z, Nordlander P, Halas N J 2013 Nat. Commun. 4 1643

    [36]

    Goykhman I, Desiatov B, Khurgin J B, Shappir J, Levy U 2011 Nano Lett. 11 2219

    [37]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [38]

    Liu N, Langguth L, Weiss T, Kstel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758

    [39]

    Brongersma M L, Kik P G 2010 Surface Plasmon Nanophotonics (New York: Springer)

    [40]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [41]

    Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S 2012 Science 337 450

    [42]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [43]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [44]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken, NJ: Wiley Sons)

    [45]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [46]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159

    [47]

    Caldwell J D, Glembocki O J, Sharac N, Giannini V, Bezares F J, Long J P, Owrutsky J C, Vurgaftman I, Tischler J G, Wheeler V D, Bassim N D, Shirey L M, Kasica R, Maier S A 2013 Nano Lett. 13 3690

    [48]

    Feurer T, Stoyanov N S, Ward D W, Vaughan J C, Statz E R, Nelson K A 2007 Ann. Rev. Mater. Res. 37 317

    [49]

    Hillenbrand R 2004 Ultramicroscopy 100 421

    [50]

    Zhang X J, Wu D M, Sun C, Zhang X 2007 Phys. Rev. B 76 085318

    [51]

    Huang K 1951 Proc. Roy. Soc. A 208 352

    [52]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [53]

    Henry C H, Hopfield JJ 1965 Phys. Rev. Lett. 15 964

    [54]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [55]

    Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin Moreno L, Koppens F 2017 Nature Mater. 16 182

    [56]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [57]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [58]

    Huang K 1950 Report LT 239 1

    [59]

    Huang K 1951 Nature 167 779

    [60]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattice (Oxford: Clarendon)

    [61]

    Kittel C 1986 Introduction to Solid State Physics (6th Ed.) (New York: Wiley)

    [62]

    Hook J R, Hall H E 1991 Solid State Physics (2nd Ed.) (New York: Wiley)

    [63]

    Grosso G, Parravicini G P 2000 Solid State Physics (San Diego: Academic)

    [64]

    Lyddane R H, Sachs R G, Teller E 1941 Phys. Rev. 59 673

    [65]

    Haraguchi M, Fukui M, Muto S 1990 Phys. Rev. B 41 1254

    [66]

    Moore W J, Holm R T 1996 J. Appl. Phys. 80 6939

    [67]

    Yu P Y, Cardona M 1999 Fundamentals of Semiconductors: Physics and Materials Properties (New York: Springer)

    [68]

    Passerat de Silans T, Maurin I, Chaves de Souza Segundo P, Saltiel S, Gorza M P, Ducloy M, Bloch D, Meneses D, Echegut P 2009 J. Phys. Condens. Matter 21 255902

    [69]

    Cottam M G, Tilley D R 2004 Introduction to Surface and Superlattice Excitations (2nd Ed.) (Bristol: IOP)

    [70]

    Auld B A 1973 Acoustic Fields and Waves in Solids (New York: Wiley)

    [71]

    Niizeki N, Yamada T, Toyoda H 1967 Jpn. J. Appl. Phys. 6 318

    [72]

    Zhang X J, Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N 2004 Appl. Phys. Lett. 85 3531

    [73]

    Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B, Feng Y J 1999 Science 284 1822

    [74]

    Zhu Y Y, Zhang X J, Lu Y Q, Chen Y F, Zhu S N, Ming N B 2003 Phys. Rev. Lett. 90 053903

    [75]

    Zhang X J, Xuan X F, Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B 2003 Physics 32 745

    [76]

    Zhang X J, Zhu R Q, Zhao J, Chen Y F, Zhu Y Y 2004 Phys. Rev. B 69 085118

    [77]

    Caldwell J D, Lindsay L, Giannini V, Vurgaftman I, Reinecke T L, Maier S A, Glembocki O J 2015 Nanophotonics 4 44

    [78]

    Hu X K, Ming Y, Zhang X J, Lu Y Q, Zhu Y Y 2012 Appl. Phys. Lett. 101 151109

    [79]

    Williams C R, Andrews S R, Maier S A, Fernndez Domnguez A I, Martn Moreno L, Garca Vidal F J 2008 Nat. Photon. 2 175

    [80]

    Pendry J B, Martn Moreno L, Garca Vidal F J 2004 Science 305 847

    [81]

    Garca Vidal F J, Martn Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97

    [82]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670

    [83]

    Maier S A, Andrews S R, Martn Moreno L, Garca Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [84]

    van Exter M, Grischkowsky D 1990 Phys. Rev. B 41 12140

    [85]

    Saxler J, Gmez Rivas J, Janke C, Pellemans H P M, Haring Bolivar P, Kurz H 2004 Phys. Rev. B 69 155427

    [86]

    Gmez Rivas J, Kuttge M, Haring Bolivar P, Kurz H, Snchez Gil J A 2004 Phys. Rev. Lett. 93 256804

    [87]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Philadelphia, PA: Saunders)

    [88]

    Allen Jr S J, Tsui D C, Logan R A 1977 Phys. Rev. Lett. 38 980

    [89]

    Stern F 1967 Phys. Rev. Lett. 18 546

    [90]

    Nakayama M 1974 J. Phys. Soc. Jpn. 36 393

    [91]

    Basov D N, Fogler M M, Garca de Abajo F J 2016 Science 354 195

    [92]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [93]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [94]

    Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004

    [95]

    Wang W H, Apell P, Kinaret J 2011 Phys. Rev. B 84 085423

    [96]

    Nikitin A Y, Guinea F, Garca Vidal F J, Martn Moreno L 2011 Phys. Rev. B 84 161407

    [97]

    Zhu X L, Yan W, Asger Mortensen N, Xiao S S 2013 Opt. Express 21 3486

    [98]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [99]

    Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nanotech. 8 556

    [100]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photon. 7 948

    [101]

    Wu J S, Basov D N, Fogler M M 2015 Phys. Rev. B 92 205430

    [102]

    Bohren C F, Huffman D R 2004 Absorption and Scattering of Light by Small Particles (Weinheim: John Wiley Sons)

    [103]

    Scharte M, Porath R, Ohms T, Aeschlimann M, Krenn J R, Ditlbacher H, Aussenegg F R, Liebsch A 2001 Appl. Phys. B 73 305

    [104]

    Kreibig U, Vollmer M 2010 Optical Properties of Metal Clusters (Berlin: Springer)

    [105]

    Bosman M, Ye E, Tan S F, Nijhuis C A, Yang J K W, Marty R, Mlayah A, Arbouet A, Girard C, Han M Y 2013 Sci. Rep. 3 1312

    [106]

    Alonso Gonzalez P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Vlez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotech. 12 31

    [107]

    Nagpal P, Lindquist N C, Oh S H, Norris D J 2009 Science 325 594

    [108]

    Kariniemi M, Niinisto J, Hatanpaa T, Kemell M, Sajavaara T, Ritala M, Leskel M 2011 Chem. Mater. 23 2901

    [109]

    Wang C Y, Chen H Y, Sun L Y, Chen W L, Chang Y M, Ahn H, Li X Q, Gwo S 2015 Nat. Commun. 6 7734

    [110]

    Liang H Z, Kim D J, Chung H S, Zhang J, Yu K N, Li S H, Li R X 2003 Acta Phys. Chim. Sin. 19 150

    [111]

    Gu X F, Lin I T, Liu J M 2013 Appl. Phys. Lett. 103 071103

    [112]

    Sridhara S G, Carlsson F H C, Bergman J P, Janzen E 2001 Appl. Phys. Lett. 79 3944

    [113]

    Stahlbush R E, Fatemi M, Fedison J B, Arthur S D, Rowland L B, Wang S 2002 J. Electron. Mater. 31 370

    [114]

    Caldwell J D, Klein P B, Twigg M E, Stahlbush R E 2006 Appl. Phys. Lett. 89 103519

    [115]

    Caldwell J D, Liu K X, Tadjer M J, Glembocki O J, Stahlbush R E, Hobart K D, Kub F 2007 J. Electron. Mater. 36 318

    [116]

    Caldwell J D, Stahlbush R E, Glembocki O J, Ancona M G, Hobart K D 2010 J. Appl. Phys. 108 044503

    [117]

    Caldwell J D, Stahlbush R E, Hobart K D, Glembocki O J, Liu K X 2007 Appl. Phys. Lett. 90 143519

    [118]

    Galeckas A, Linnros J, Pirouz P 2006 Phys. Rev. Lett. 96 025502

    [119]

    Ha S, Skowronski M, Sumakeris J J, Paisley M J, Das M K 2004 Phys. Rev. Lett. 92 175504

    [120]

    Iwata H P, Lindefelt U, Oberg S, Briddon P R 2003 Physica B 340 165

    [121]

    Maximenko S I, Freitas J A, Klein P B, Shrivastava A, Sudarshan T S 2009 Appl. Phys. Lett. 94 092101

    [122]

    Bergman J P, Lendenmann H, Nilsson P A, Lindefelt U, Skytt P 2001 Mater. Sci. Forum 353356 299

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [3]

    Soref R 2010 Nat. Photon. 4 495

    [4]

    Mittleman D 2003 Sensing with Terahertz Radiation (Berlin: Springer)

    [5]

    Sakai K 2005 Terahertz Optoelectronics (Berlin: Springer)

    [6]

    Lee Y S 2009 Principles of Terahertz Science and Technology (Berlin: Springer)

    [7]

    Zhang X C, Xu J 2010 Introduction to THz Wave Photonics (Berlin: Springer)

    [8]

    Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001

    [9]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [10]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [11]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667

    [12]

    Nie S, Emory S R 1997 Science 275 1101

    [13]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [14]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou, J G 2013 Nature 498 82

    [15]

    Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U K, DenBaars S P 1999 Phys. Rev. B 60 11564

    [16]

    Okamoto K, NiKi I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nat. Mater. 3 601

    [17]

    Pompa P P, Martiradonna L, Della Torre A, Della Sala F, Manna L, de Vittorio M, Calabi F, Cingolani R, Rinaldi R 2006 Nat. Nanotech. 1 126

    [18]

    Shimizu K T, Woo W K, Fisher B R, Eisler H J, Bawendi M G 2002 Phys. Rev. Lett. 89 117401

    [19]

    Zhang X J, Wang P W, Zhang X Z, Xu J, Zhu Y Y, Yu D P 2009 Nano Res. 2 47

    [20]

    Zhang X J, Tang H, Huang J A, Luo L B, Zapien J A, Lee S T 2011 Nano Lett. 11 4626

    [21]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459

    [22]

    Jiang J J, Xu F, Xie Y B, Tang X M, Liu Z Y, Zhang X J, Zhu Y Y 2013 Opt. Lett. 38 4570

    [23]

    Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W, Wee A T S 2016 Nat. Commun. 7 11283

    [24]

    Genevet P, Tetienne J P, Gatzogiannis E, Blanchard R, Kats M A, Scully M O, Capasso F 2010 Nano Lett. 10 4880

    [25]

    Cai W, Vasudev A P, Brongersma M L 2011 Science 333 1720

    [26]

    Valev V K 2012 Langmuir 28 15454

    [27]

    Grosse N B, Heckmann J, Woggon U 2012 Phys. Rev. Lett. 108 136802

    [28]

    Li G, Zhang S, Zengtgraf T 2017 Nat. Rev. Mater. 2 17010

    [29]

    Ebbesen T W, Lezec H J, Chaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [30]

    Andrew P, Barnes W L 2004 Science 306 1002

    [31]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205

    [32]

    Aubry A, Lei D Y, Fernandez Dominguez A I, Sonnefraud Y, Maier S A, Pendry J B 2010 Nano Lett. 10 2574

    [33]

    Mooney J M, Silverman J 1985 IEEE Trans. Electron. Dev. 32 33

    [34]

    Clavero C 2014 Nat. Photon. 8 95

    [35]

    Sobhani A, Knight M W, Wang Y, Brown L V, Fang Z, Nordlander P, Halas N J 2013 Nat. Commun. 4 1643

    [36]

    Goykhman I, Desiatov B, Khurgin J B, Shappir J, Levy U 2011 Nano Lett. 11 2219

    [37]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [38]

    Liu N, Langguth L, Weiss T, Kstel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758

    [39]

    Brongersma M L, Kik P G 2010 Surface Plasmon Nanophotonics (New York: Springer)

    [40]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [41]

    Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S 2012 Science 337 450

    [42]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [43]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [44]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken, NJ: Wiley Sons)

    [45]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [46]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159

    [47]

    Caldwell J D, Glembocki O J, Sharac N, Giannini V, Bezares F J, Long J P, Owrutsky J C, Vurgaftman I, Tischler J G, Wheeler V D, Bassim N D, Shirey L M, Kasica R, Maier S A 2013 Nano Lett. 13 3690

    [48]

    Feurer T, Stoyanov N S, Ward D W, Vaughan J C, Statz E R, Nelson K A 2007 Ann. Rev. Mater. Res. 37 317

    [49]

    Hillenbrand R 2004 Ultramicroscopy 100 421

    [50]

    Zhang X J, Wu D M, Sun C, Zhang X 2007 Phys. Rev. B 76 085318

    [51]

    Huang K 1951 Proc. Roy. Soc. A 208 352

    [52]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [53]

    Henry C H, Hopfield JJ 1965 Phys. Rev. Lett. 15 964

    [54]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [55]

    Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin Moreno L, Koppens F 2017 Nature Mater. 16 182

    [56]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [57]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [58]

    Huang K 1950 Report LT 239 1

    [59]

    Huang K 1951 Nature 167 779

    [60]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattice (Oxford: Clarendon)

    [61]

    Kittel C 1986 Introduction to Solid State Physics (6th Ed.) (New York: Wiley)

    [62]

    Hook J R, Hall H E 1991 Solid State Physics (2nd Ed.) (New York: Wiley)

    [63]

    Grosso G, Parravicini G P 2000 Solid State Physics (San Diego: Academic)

    [64]

    Lyddane R H, Sachs R G, Teller E 1941 Phys. Rev. 59 673

    [65]

    Haraguchi M, Fukui M, Muto S 1990 Phys. Rev. B 41 1254

    [66]

    Moore W J, Holm R T 1996 J. Appl. Phys. 80 6939

    [67]

    Yu P Y, Cardona M 1999 Fundamentals of Semiconductors: Physics and Materials Properties (New York: Springer)

    [68]

    Passerat de Silans T, Maurin I, Chaves de Souza Segundo P, Saltiel S, Gorza M P, Ducloy M, Bloch D, Meneses D, Echegut P 2009 J. Phys. Condens. Matter 21 255902

    [69]

    Cottam M G, Tilley D R 2004 Introduction to Surface and Superlattice Excitations (2nd Ed.) (Bristol: IOP)

    [70]

    Auld B A 1973 Acoustic Fields and Waves in Solids (New York: Wiley)

    [71]

    Niizeki N, Yamada T, Toyoda H 1967 Jpn. J. Appl. Phys. 6 318

    [72]

    Zhang X J, Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N 2004 Appl. Phys. Lett. 85 3531

    [73]

    Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B, Feng Y J 1999 Science 284 1822

    [74]

    Zhu Y Y, Zhang X J, Lu Y Q, Chen Y F, Zhu S N, Ming N B 2003 Phys. Rev. Lett. 90 053903

    [75]

    Zhang X J, Xuan X F, Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B 2003 Physics 32 745

    [76]

    Zhang X J, Zhu R Q, Zhao J, Chen Y F, Zhu Y Y 2004 Phys. Rev. B 69 085118

    [77]

    Caldwell J D, Lindsay L, Giannini V, Vurgaftman I, Reinecke T L, Maier S A, Glembocki O J 2015 Nanophotonics 4 44

    [78]

    Hu X K, Ming Y, Zhang X J, Lu Y Q, Zhu Y Y 2012 Appl. Phys. Lett. 101 151109

    [79]

    Williams C R, Andrews S R, Maier S A, Fernndez Domnguez A I, Martn Moreno L, Garca Vidal F J 2008 Nat. Photon. 2 175

    [80]

    Pendry J B, Martn Moreno L, Garca Vidal F J 2004 Science 305 847

    [81]

    Garca Vidal F J, Martn Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97

    [82]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670

    [83]

    Maier S A, Andrews S R, Martn Moreno L, Garca Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [84]

    van Exter M, Grischkowsky D 1990 Phys. Rev. B 41 12140

    [85]

    Saxler J, Gmez Rivas J, Janke C, Pellemans H P M, Haring Bolivar P, Kurz H 2004 Phys. Rev. B 69 155427

    [86]

    Gmez Rivas J, Kuttge M, Haring Bolivar P, Kurz H, Snchez Gil J A 2004 Phys. Rev. Lett. 93 256804

    [87]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Philadelphia, PA: Saunders)

    [88]

    Allen Jr S J, Tsui D C, Logan R A 1977 Phys. Rev. Lett. 38 980

    [89]

    Stern F 1967 Phys. Rev. Lett. 18 546

    [90]

    Nakayama M 1974 J. Phys. Soc. Jpn. 36 393

    [91]

    Basov D N, Fogler M M, Garca de Abajo F J 2016 Science 354 195

    [92]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [93]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [94]

    Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004

    [95]

    Wang W H, Apell P, Kinaret J 2011 Phys. Rev. B 84 085423

    [96]

    Nikitin A Y, Guinea F, Garca Vidal F J, Martn Moreno L 2011 Phys. Rev. B 84 161407

    [97]

    Zhu X L, Yan W, Asger Mortensen N, Xiao S S 2013 Opt. Express 21 3486

    [98]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [99]

    Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nanotech. 8 556

    [100]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photon. 7 948

    [101]

    Wu J S, Basov D N, Fogler M M 2015 Phys. Rev. B 92 205430

    [102]

    Bohren C F, Huffman D R 2004 Absorption and Scattering of Light by Small Particles (Weinheim: John Wiley Sons)

    [103]

    Scharte M, Porath R, Ohms T, Aeschlimann M, Krenn J R, Ditlbacher H, Aussenegg F R, Liebsch A 2001 Appl. Phys. B 73 305

    [104]

    Kreibig U, Vollmer M 2010 Optical Properties of Metal Clusters (Berlin: Springer)

    [105]

    Bosman M, Ye E, Tan S F, Nijhuis C A, Yang J K W, Marty R, Mlayah A, Arbouet A, Girard C, Han M Y 2013 Sci. Rep. 3 1312

    [106]

    Alonso Gonzalez P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Vlez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotech. 12 31

    [107]

    Nagpal P, Lindquist N C, Oh S H, Norris D J 2009 Science 325 594

    [108]

    Kariniemi M, Niinisto J, Hatanpaa T, Kemell M, Sajavaara T, Ritala M, Leskel M 2011 Chem. Mater. 23 2901

    [109]

    Wang C Y, Chen H Y, Sun L Y, Chen W L, Chang Y M, Ahn H, Li X Q, Gwo S 2015 Nat. Commun. 6 7734

    [110]

    Liang H Z, Kim D J, Chung H S, Zhang J, Yu K N, Li S H, Li R X 2003 Acta Phys. Chim. Sin. 19 150

    [111]

    Gu X F, Lin I T, Liu J M 2013 Appl. Phys. Lett. 103 071103

    [112]

    Sridhara S G, Carlsson F H C, Bergman J P, Janzen E 2001 Appl. Phys. Lett. 79 3944

    [113]

    Stahlbush R E, Fatemi M, Fedison J B, Arthur S D, Rowland L B, Wang S 2002 J. Electron. Mater. 31 370

    [114]

    Caldwell J D, Klein P B, Twigg M E, Stahlbush R E 2006 Appl. Phys. Lett. 89 103519

    [115]

    Caldwell J D, Liu K X, Tadjer M J, Glembocki O J, Stahlbush R E, Hobart K D, Kub F 2007 J. Electron. Mater. 36 318

    [116]

    Caldwell J D, Stahlbush R E, Glembocki O J, Ancona M G, Hobart K D 2010 J. Appl. Phys. 108 044503

    [117]

    Caldwell J D, Stahlbush R E, Hobart K D, Glembocki O J, Liu K X 2007 Appl. Phys. Lett. 90 143519

    [118]

    Galeckas A, Linnros J, Pirouz P 2006 Phys. Rev. Lett. 96 025502

    [119]

    Ha S, Skowronski M, Sumakeris J J, Paisley M J, Das M K 2004 Phys. Rev. Lett. 92 175504

    [120]

    Iwata H P, Lindefelt U, Oberg S, Briddon P R 2003 Physica B 340 165

    [121]

    Maximenko S I, Freitas J A, Klein P B, Shrivastava A, Sudarshan T S 2009 Appl. Phys. Lett. 94 092101

    [122]

    Bergman J P, Lendenmann H, Nilsson P A, Lindefelt U, Skytt P 2001 Mater. Sci. Forum 353356 299

  • [1] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] 马少卿, 龚士香, 张微, 路承彪, 李小俚, 李英伟. 宽带微量太赫兹辐射促进神经元生长发育. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220636
    [3] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212400
    [4] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [9] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [10] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 段嘉华, 陈佳宁. 二维极化激元学近场研究进展. 物理学报, 2019, 68(11): 110701. doi: 10.7498/aps.68.20190341
    [13] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 物理学报, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [14] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [15] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [16] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [17] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [19] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [20] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
计量
  • 文章访问数:  4252
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2017-07-13
  • 刊出日期:  2017-07-05

太赫兹表面极化激元

  • 1. 南京大学现代工程与应用科学学院, 固体微结构物理国家重点实验室, 人工微结构科学与技术协同创新中心, 南京 210093
  • 通信作者: 张学进, xuejinzh@nju.edu.cn
    基金项目: 国家重点研发计划(批准号:2017YFA0303700)和国家自然科学基金(批准号:11621091,11374150,11274159)资助的课题.

摘要: 作为束缚于表面或界面的电磁波与极性元激发的耦合模量子,表面极化激元是克服衍射极限的核心物理.在紫外、可见以及近红外波段,表面等离子极化激元展现出了亚波长特性,具有高分辨成像等应用,并发展成为表面等离子极化激元亚波长光学学科;在中红外波段,表面声子极化激元发挥着同样的作用.太赫兹波段曾是人类认识的空白区域,近三十年来得以高速发展,其战略意义重大.具有克服衍射极限能力的太赫兹表面极化激元同样是小型化与集成化太赫兹器件,以及太赫兹超高分辨成像的重要物理基础.近几年来,对以石墨烯为代表的二维材料的研究突飞猛进,诞生了石墨烯表面等离子极化激元亚波长光学这门学科,并贡献于太赫兹领域.本文对可在太赫兹波段工作的人工超构材料、掺杂半导体、二维电子气、二维材料、拓扑绝缘体等结构材料的表面极化激元进行了较为全面的总结与介绍,为研制克服衍射极限的太赫兹集成光子学器件提供可资借鉴的物理基础.

English Abstract

参考文献 (122)

目录

    /

    返回文章
    返回